水海域を航行する船舶に関する研究動向および
氷海域における海洋環境保全への取り組みについて

正具 宮崎 智*

1 はじめに

このたび、日本造船学会の若手活性化事業に係わる海外派遣により、2004年12月6日から14日にかけて、イギリス・ノルウェー・フィンランド・ロシアの船級・研究機関へ訪問する機会が得られたのでここに報告する。

1.1 調査・研究は「氷海域を航行する船舶に関する研究動
向および、氷海域における海洋環境保全への取り組みにつ
いて」をテーマとしている。

近年、氷海域を航行する原油または液化天然ガスタンカーの開発ニーズが非常に高まっている。これらのタンカーは、通常の船級とは異なり、極寒環境下で寿命が長く、
船級が変わる。例えば融雪防止対策が要求され、ロシアの水産科は航行する船舶に政府発行のICE PASSPORTと呼ばれる証書の取得が義務付けられる場合がある。

そこで、氷海域を航行する船舶全般に関するテーマとして、海冰による荷重、着氷防止・除去技術に関する最新の研究動向について各国の研究機関の調査を行うこととした。

2 調査スケジュールおよび訪問先

表1に調査スケジュールおよび訪問先を示す。

LRおよびDNV船級協会では、氷海域を航行する船舶に対する使用形態や設計条件についての調査を行った。フィンランドのHUT、VTTでは、おもにパルト海を航行する船舶に適用されるFinnish-Swedish ice class ruleの基準やパルト海における氷の航行の技術について調査を行った。

ロシアのAARI、CNIIFでは、パルト海、北極海、
ノルウェグ海における氷の航行技術や国際共同研究などに
いて調査を行った。

3 LR（Lloyd's Register）船級協会本部

調査を開始日は、ロンドン市内にあるLR船級協会本部
のRobert Bridges氏を訪問した。ここでは、英国海
軍の補助船籍に適用されるLR Naval Ruleに示された北

* 三菱重工業（株）長崎造船所

表1　調査スケジュールおよび訪問先

12月5日（日）	水	始業・ロンドン着
12月6日（月）	LR船級協会本部訪問	
12月7日（火）	ロンドン→オスロ着	
12月8日（水）	DNV船級協会本部訪問	
12月9日（木）	オスロ→ヘルシンキ着	
12月10日（金）	HUT訪問、VTT訪問	
12月11日、12日（土・日）	ヘルシンキ滞在	
12月13日（月）	ヘルシンキー→サンクトペルテルブルグ着	
12月14日（火）	AARI訪問、CNIIF訪問	
12月15日、16日（水、木）	ヘルシンキ→関西着	

極寒・南極海のIce limit（著者ごとの海氷の密度や、流氷の到達限界、着氷のレベルを示したもの）をもとに、パルト海、北極海、ノルウェー海域における氷象・気温・海水を比較しながら、氷海域における設計条件の設定の背景についてレクチャーを受けた。

また、低温海域を航行する船舶に要求される主船体・艦装品の耐冷特性や、デッキ上に積み上げた水を除去す
る技術や蓄積装置についてディスカッションを行った。

意外なことに、積み上げた水を叩き落すために野球用の
木製バットを流用することもあるらしい。木製なのでスパ
ークが発生する心配がないとのことである。

4 DNV（Det Norske Veritas）船級協会本部

第2日にロンドンからオスロへ移動した。冬の北欧は初
めての経験であった。思ったよりも暖かかったものの、長
時間屋外にいると肌がちくちく痛んでくる。午後4時過ぎ
ごろから日が暮れ始め、午後6時ごろにはもう真夜中と錯
覚するほどであった。

第3日目はDNV船級協会本部を訪問した。DNVでは、
Mörtens MEJLADER-LARSEN氏、Karl Jorgen
STRAUMAN氏、Torill Grimstad OSBERG氏が迎えて
くれた。

まず、ノルウェーを訪問するノルウェー港、パルト海、パレ
ンツ海の気象・海象・氷象についてレクチャーを受けた。
図1 北半球の氷の密着度（1972～1984年3月の例）

写真1 HUT氷海氷槽

当初、ノルウェー海は北極海にも近いので、気象条件は非常によく厳しいものと想像していたが、実際はメキシコ暖流が流れ込むため、ノルウェー沖からロシアのムルマンスク付近までは冬季でも海水は発生しない。一方、緯度的には低い位置にあるバルト海は、暖流の影響を受けていない海域であるため、11月ごろから3月ごろまではIce seasonなることであった（図1参照）。

続いて、DNVのDECE Notationで要求される船装品の寒冷地仕様や、Finnish-Swedish ice class ruleのルールの適用に関するディスカッションを行った。

5 HUT（Helsinki University of Technology）

第4日目は、オスロからヘルシンキに移動した。ヘルシンキも思ったほど寒くなく、ヘルシンキ港も河口のごく一部を除いてまばらに氷が張っていなかった。本調査のテーマに考慮しておわりを冬期に訪問したものの、まだIce seasonに入っていなかったのが残念であった。

第5日目の午前中は、ヘルシンキの隣のエスポーという都市にあるHUT（Helsinki University of Technology）のKaj Riska教授を訪問した。

HUTは、フィンランド国内でも有数の国立工科大学であり、学生数13,000人、教員3,000人、教官250人を有する。SHIP LABには、Naval architect、Hydrodynamic、Machinery、Arctic Marineの4つの研究室があり、Prof. RiskaはArctic Marineを担当している。同研究室は、Finnish Maritime Administrationにより関連の研究を数多く受託し、またロシアやバルト三国との共同研究も実施している。

ここでは、バルト海における氷海航行技術や、Finnish-Swedish ice class ruleのバックグラウンドなどについてのレクチャーを受けた。また、同研究室が保有している氷海水槽を見学させてもらった。ここでは、1日かけて氷を生成し、翌日に実験、翌日氷の生成…というスパンを繰り返すそうだが、訪問日は、氷の生成中であり、残念ながら実験は見学できなかった（写真1）。

6 VTT（Technical Research Center of Finland）

午後は、HUTに隣接するVTT（Technical Research Center of Finland）に移動し、Industrial Systems/Product performance研究室のTapio Nyman氏、Saara Hanninen氏を訪ねた。VTTは、国立の工学研究機関であり、交通システムだけでなくバイオ・電子・通信などあらゆる分野の工学研究を担っている。

ここでは、バルト海における船舶による原油輸送等の計測についての調査報告、バルト海の環境保全のための国際会議（HELCOM）、安全旅行のための管制システム（GOFRRP）などについての説明を受けた。

また、氷地域においてオイルタンカーの損傷などによる原油の漏洩が発生した場合、原油が氷の下にもぐりこむため、回収が非常に難しくなるそうであり、VTTでは、氷地域における原油回収装置の研究・開発を行っており、実海域試験結果などの説明を受けた。

第6、7日目はヘルシンキで休日となったため、ヘルシンキ港内にあるフィンランド政府（Finnish Maritime Administration）保有の氷船基地まで足を運んだ。まだIce seasonではないためか、全9隻のうち5隻が係留されていた（写真2）。

7 AARI（Arctic and Antarctic Research Institute）

第8日目は、ヘルシンキからロシア・キクトベテルブグルへ空路で移動した。キクトベテルブグルはヘルシンキから飛行機で45分程度の距離であり、ロシアではモス
クワに次ぐ第二の都市である。今回は時間の関係で訪問できなかったが、有名なエルミタージュ美術館の他、海軍博物館、日露戦争で使用された巡洋艦オーロラ号など、海事関係の見どころも多い町である。

調査最終日の午前中は、AARI（Arctic and Antarctic Research Institute）のV.A. Likhomanov氏を訪問した。本研究所は、気象庁所管の極地研究所であり、北極や南極での気象・海洋観測や、氷海における船船の性能・強度に関する研究を行っている。ここでは、北極海やオホーツク海における氷海の気象条件や、船船構造の潜水タンカー（氷の下に潜るので、海氷によって針路を塞がることがないというメリットがある）の実験などについて説明を受けた（写真3）。また、当時は改修工事中であったが、氷海構造も見学させてもらった。

8 CNHIMF（Central Marine Research and Design Institute）

最終日の午後は、CNHIMF（Central Marine Research and Design Institute）のLoly G. Tsoy氏を訪問した。本研究所は運輸省所管の船船技術研究所である。

ここでは、ロシアの原油開発にもとない、非常にお発化しつつある、オイルタンカーによる北極海・オホーツク海輸送航行に関する国際プロジェクト（たとえば日本も参加しているINSROPなど）や、北極海、エニセイ川における氷海航行技術に関する説明を受けた。

彼らは、日本の研究者との接点も多く、今後も日本の造船業界・研究機関との共同研究をさらに推進していきたいという熱意を強く感じた。

9 おわりに

今回、4カ国6機関を訪問させてもらったが、ロシアの機関も含めて、彼らはPinnish-Swedish ice class ruleの技術委員会、バルト海の海上安全委員会、極地航続プロジェクトを通じて、非常に密接な連携を保っていることを強く感じた。

氷海航続に関しては、アジア諸国中の造船業界と比べると、欧州造船業界はその経験と実績から、遠かに高い水準にあると言わざるを得ないが、彼らの弱点のひとつとしては、バルト海では船船構造の大型商船（タンカー、ガス船）の建造実績や運行実績が少ないことが挙げられる。今後、オホーツク海沿岸において、タンカー、ガス船の建造・運行実績が、アジアの造船業界を中心に積み上げられると思われるが、この分野においては、欧州をリードすることも可能と思われる。

今後も、今回得られたコニサリオンをさらに密接なものにしていくとともに、これらの知見を生かして、この分野の研究開発をリードできるよう努力する所存である。

最後に、欧州各国の水海関連研究の専門家と直接面談し技術交流するという、非常に貴重な機会を与えていただきました日本財団および日本造船学会の関係各位に対し、この場を借りて厚く御礼申し上げます。