AEFD 戦略研究委員会

最終報告書

平成 21 年 3 月 27 日
目次

1. はじめに.. - 4 -
 1.1 委員会の発足に至った経緯... - 4 -
 1.2 委員会の目的 ... - 4 -
2. EU の HTA プロジェクト ... - 5 -
 2.1 ねらい .. - 5 -
 2.2 共同研究プログラム(JRP) ... - 5 -
 2.2.1 JRP1: 流体実験施設における PIV(Particle Image Velocimetry)計測の実施 - 5 -
 2.2.2 JRP2: 流場データの解析と可視化 .. - 6 -
 2.2.3 JRP3: 3 次元波分布計測 ... - 6 -
 2.2.4 JRP4: POD 計測 ... - 6 -
 2.2.5 JRP5: 有線データ転送 ... - 7 -
 2.2.6 JRP6: 高度ビデオ撮影と解析 ... - 7 -
 2.2.7 JRP7: 知能化材料と製造法 ... - 8 -
 2.2.8 JRP8: 浸水表面 ... - 8 -
 2.2.9 JRP9: 自由航走模型試験 .. - 9 -
2.3 HTA の最新動向 .. - 10 -
 2.3.1 はじめに .. - 10 -
 2.3.2 訪問先と調査結果 ... - 10 -
 2.3.2.1 MARINTEK .. - 10 -
 2.3.2.2 MARIN .. - 11 -
 2.3.2.3 SIREHNA ... - 12 -
 2.3.2.4 INSEAN ... - 14 -
 2.3.2.5 HSVA ... - 15 -
 2.3.3 おわりに .. - 16 -
3. 試験法についての国内外の動向 ... - 18 -
 3.1 国内試験水槽の動向 ... - 18 -
 3.1.1 海技研 .. - 18 -
 3.1.2 防衛省 .. - 19 -
 3.1.3 水産工学研究所 .. - 21 -
 3.1.4 九州大学 ... - 25 -
 3.1.5 大阪大学 ... - 28 -
 3.2 ITTC の各 Technical Committee における試験法の動向 - 33 -
 3.2.1 Resistance Committee .. - 33 -
 3.2.2 Propulsion Committee ... - 39 -
1. はじめに

海技研 児玉良明

1.1 委員会の発足に至った経緯

水槽試験法は、長年の蓄積により確立された部分もあるが、光学的計測法など新しい技術の発達に伴い、従来は不可能であった計測が実施できる可能性が出て来ており、また、実海域性能の推定など新しいニーズに応える必要性も出てきた。そして EU では、先進的な水槽試験技術を開発するため、HTA プロジェクトが 5 年間の期間で 2006 年 9 月に開始された。HTA プロジェクトについては第 2 章で詳しく述べる。このような動きを考慮して、水槽試験及び実船計測法が、新しい技術の発展を考慮するとどのような可能性をもつか、またその可能性を実現するためにはどのような方策が考えられるのかを討議するため、本研究委員会が設立された。

1.2 委員会の目的

本委員会では、将来のニーズに応える試験水槽及び実船における EFD(Experimental Fluid Dynamics)技術の姿について、現在及び将来のニーズ、現状及び近い将来の技術の発達などを踏まえて、討議し、具体策を提案することを目的とした。なお AEFD は Advanced EFD の略である。
2. EU の HTA プロジェクト

海上技術安全研究所 児玉良明

2.1 ねらい

本委員会の発足は EU における HTA の動きに触発されたものであり、先ず HTA の概要を紹介する。詳細は HTA web site を参照されたい。

HTA (Hydro-Testing Alliance) は、EU の主要な水槽試験研究機関をメンバーとして 2006 年 9 月に発足し、5 年間をかけて先進的な水槽試験技術を共同で開発しようとしている。HTA は European Commission's Sixth Framework Programme under DG Research をスポンサーとする EU プロジェクトである。主要な参加機関は MARIN, SIREHNA, HSV, SSPA, INSEAN, MARINTEK, FORCE Technology, QinetiQ, VTT, CTO, 大学である。HTA の目的は、極東や北米との競争に晒されているヨーロッパの水槽試験研究機関が今後 10 年間主導的な地位を保つことであり、以下の成果を得ることを目指している。特に第 3 番目が刺激的である。

- 参加機関が協力し、計測技術の研究開発について方針を立てる。
- 競争相手である参加機関を信頼し、継続的な協力関係を作り上げる。
- 米国や極東に対して競争力と優位性を強化する。
- 技能と効率の優秀さを確保し、産業と大学教育に恩恵をもたらす。
- 新技術をより早く市場に供給する。
- 参加研究者に体系化された研究開発環境を提供する。
- 技術を商品の形で産業によりよく普及させる。
- 市場原理に大略支配される海事試験環境を管理することにより、よりよいサポートを提供する。

2.2 共同研究プログラム(JRP)

HTA では、以下の 9 つの共同研究プログラム (Joint Research Program, JRP) を実施している。

2.2.1 JRP1: 流体実験施設における PIV (Particle Image Velocimetry) 計測の実施

3C PIV (3 成分 PIV) について、以下を目的とする。
- 水槽試験設備における柔軟且つ効率的な PIV 計測 (様々な実験設備と実験方法への適応性)
- 主要な用途に関して、既存の PIV の機能向上
- 様々な施設・PIV システムについて、主な用途に関してベンチマーク試験を実施。
実験データは JRP2 で扱う。
2.2.2 JRP2: 流場データの解析と可視化
以下を目的とする。

・CFD の膨大な流場計算データと EFD の膨大な流場実験データを可視化し、解析し、比較する手法を検討する。
・既存のデータベースを調べ選別する。
・既存の手法を調べ選別する。
・ベンチマークのためのワークショップを開催する。

2.2.3 JRP3: 3 次元波分布計測
詳細不明。(HTA web site に記載無し)

2.2.4 JRP4: POD 計測
以下を目的とする。
・模型 pod 全体にかかる力とトルクの計測法の改良。
・模型 pod の各部分 (プロペラ、シャフト、ベアリング、ブレード、ダクト、ハウジングなど) にかかる力とトルクの計測法の改良。
・pod 用モータの小型化とデータ転送技術の改良。
・模型 pod の駆動系の改良。

図 2.2.3 HTA JRP4: POD(HTA web site より)

2.2.5 JRP5: 無線データ転送
以下を目的とする。
・無線技術を使うことにより解決できる領域を見つける。
・模型実験における無線技術の利用の促進。

図 2.2.4 HTA JRP5: 無線データ転送(HTA web site より)

2.2.6 JRP6: 高速度ビデオ撮影と解析
高速度ビデオをキャビテーション現象の同定と分類に役立てるため、以下を実施する。
・高速度ビデオ画像と計測諸量とのリンク。
・光学的設定と照明及びカメラシステムが画像の質に及ぼす影響調査。
・データ圧縮・格納技術調査。
・画像データの低減と定量的情報の抽出のための自動画像処理法の検討。
・同期多重カメラの利用による、画像立体化とキャビティ体積計測のための画像品質の向上の検討。
第2章 EUのHTAプロジェクト

・船体表面圧力との同期計測によるキャビテーションと圧力変動の発生現象の解明。

図2.2.5 HTA JRP6: 高速度ビデオ撮影と解析（HTA web siteより）

2.2.7 JRP7: 知能化材料と製造法
詳細不明。（HTA web siteに記載無し）

2.2.8 JRP8: 浸水表面
船の浸水表面積は、抵抗・推進データを模型から実船に外挿するために重要なデータである。ある種の船（セールボート、高速船、特殊船）では、船の設計形状から浸水表面積を計算しても精度が不十分なことがあり、様々な状態での実際の浸水表面積を計測する必要がある。

現在行われている計測方法は、水上・水中のカメラにより観察し、手作業で求めているが、時間がかかり、不正確である。また、部分的に濡れた表面や気液混合層が問題となることもある。

そこで、抵抗・自航試験中の浸水表面積を効率的かつ経済的に行う方法を検討する。また、浸水表面積が重要となる種類の船について正確な実船馬力推定法を開発する。
2.2.9 JRP9: 自由航走模型試験

無索の自由航走模型は、屋内・屋外、水上・水中の模型実験で必要となる場面がある。そこで、模型実験技術を向上させ、実験コストを低減させる方法を検討する。
2.3 HTA の最新動向

2.3.1 はじめに

欧州では、2006年9月にHydro Testing Alliance（HTA）が発足した。これは、EU第6次研究開発枠組み計画（FP6）の支援の下、EU内10ヶ国から12の主要試験水槽を含む19の機関が参加し、水槽試験における計測技術などの基盤強化を目的とした5年間のプロジェクトである。HTAでは、水槽試験技術に関する9つの共同研究プログラム（JRP）を推進している。このうち4つは、近年急速に技術革新が進む画像計測とデータの可視化に関するものである。開始から既に2年半が経過したが、各JRPの詳細についてはWebサイト等でも未だ明らかになっていない。そこで筆者は、日本船舶海洋工学会「若手研究者・技術者海外派遣制度」を活用し、HTAの最新動向を調査することとした。

これまで筆者は、水槽試験における画像計測法の研究・開発に従事しており、粒子画像流速測定法（PIV）や水面反射光を用いた波面計測法（RLD法）の開発を行っている。（なお、RLD法の詳細については第3章にて述べる。）この調査では、筆者の専門分野である画像計測に的を絞り、PIV（JRP1）、波面計測（JRP3）、高速度ビデオカメラの高度利用（JRP6）の3つのプロジェクトの担当リーダーやメンバーを訪問し、最新動向の調査と意見交換を行った。

2.3.2 訪問先と調査結果

本調査は、2009年1月19日から31日にかけて実施した。訪問機関は、MARINTEK（ノルウェー）、MARIN（オランダ）、SIREHNA（フランス）、INSEAN（イタリア）、HSVA（ドイツ）の5ヶ所である。

2.3.2.1 MARINTEK

MARINTEKでは、JRP3のリーダーであるDr. Carl T StansbergとメンバーであるDr. Sébastien Fouquesとお会いした。まず、筆者がRLD法の紹介を行い、意見交換を行った。Stansberg氏は筆者らのRLD法に以前から強い関心をもっており、計測可能な波傾斜範囲や、波の表面の制約、画像の取得と処理方法などについて熱心な質問を受けた。Stansberg氏からは、MARINTEKで取り組んでいる格子状に配置した波高計による波形解析の概要について紹介してもらった。

つづいて、Fouques氏の案内で試験水槽を視学させていただいた。Offshoreの実験が主流とことで、海洋構造物の大きな模型が置かれていた。波高計測には、主として抵抗線式を用いているとのことだった。
2.3.2 MARIN

MARINでは、JRP3のメンバーであるDr. Janou Hennig、JRP1のメンバーでありJRP2のリーダーであるJ.Tukker氏を訪問した。この訪問をさせていただくにあたり、筆者は訪問日の午前と午後に計2回のプレゼンテーションを行った。各回とも約10名程度が集まってくれ、討論をしてくれた。午前中はRLD法の概要を紹介した。Hennig氏からは、波面の再構成法、大傾斜が発生した場合などの対処法について質問を受けた。

Hennig氏とTukker氏と三人でランチをとりながら、HTAに限らず全般的な話をした。日本の団塊の世代の熟練技術者が大量に定年するので、各業界で技術伝承などが問題になっている話をしたところ、MARINでは若手を雇い、シニアから技術の引継ぎをしているため近年従業員数が増えたとのことであった。

つづいて、Hennig、Tukkerの両氏がMARINの各水槽施設を案内してくれた。Tukker氏によると、Offshore Basin以外ではトレーサー粒子を水中に散布し、PIV計測を行っているとのことであった。粒子はポリアミドの数十μのものを使用しており、シーディングはまず計測開始前に曳引車を逆走行させて行っているとのことであった。

日本の試験水槽で同じように粒子を散布することには抵抗があるが、散布により何か悪影響があるか聞いたところ、粒子の比重が重く底に沈むため特に大きな問題は生じていないようであった。Hennig氏には波高計プローブを格子状に配置した装置を見せてもらいながら自身が担当した実験の説明を受けた。

午後は、筆者のPIV関連研究の紹介の後、Tukker氏がMARINとSIREHNAで共同開発したPIVシステム（中身はDANTEC社製）の概要と計測事例、JRP1参加機関で行った平板によるベンチマークテストの内容を紹介してくれた。IVやNominal Wakeなどの計測結果を見せてもらった。VIVではパイプ模型表面でのレーザー光の反射が問題となるので、Black Paintingを施したところ画像の状態が
改善されたとのことであった。

Tukker 氏は、データの可視化方法について検討している JRP2 のリーダーであるが、計測結果の見せ方に圧倒された。私から紹介した PIV 計測例は回流水槽や小型水槽での小規模なものであり、非常に恥ずかしいというか、悔しい思いがした。

実は、これまで PIV システムは MARIN と SIREHNA で共用しており、（実質システムは SIREHNA からレンタルしていた）調達に時間がかかっていたが、今年 MARIN で自前のシステムを保有し、カメラを高解像度なものにするとのことであった。計測頻度を増やしていくつもりなのか聞いただけであつて、MARIN としては PIV 計測をルーティンワーク化するというわけではない。表面をもってみると透明なか開いたところ、PIV システムは非常に多くの情報が含まれているので、短期的なプロジェクトに終わらせることなく、船型開発などに是非継続して利用していきたいとのことであった。

2.3.2.3 SIREHNA

訪問時期に幸運にも JRP3 の会議が SIREHNA で開かれるとのことで、前出の Stansberg 氏の計らいで筆者も特別に急遽参加させていただいた。そこで、JRP3 のメンバーと直接議論する機会に恵まれた。JRP3 の会議の出席者は表 1 の通りで、筆者を含め計 7 名であった。

ここでも筆者が RLD 法の紹介をした後、Stansberg 氏がこれまで 2 年半の活動内容を紹介してくれた。JRP3 では現在 2 つのことを取り組んでいる。1 つ目は格子状に設置した超音波波高計による波形解析をルーティンワーク化すること、2 つ目は波浪場の画像計測法の開発である。2 つ目の画像計測法とは、ウィスコンシン大学の Chin H. Wu 教授が開発した 3 台のカメラを用いたステレオ法を用いるものである。これについては、一昨年 MARIN と SSPA で行った実験結果を紹介してもらった。結論として、ステレオカメラ法はあまりうまくいっていないとのことであった。ステレオカメラ法では、複数台のカメラ画像間の対応付けが必要となる。MARIN の Bouvy 氏が実際の撮影画像を見せながら説明してくれたところによると、この画像間の対応付けが船体近傍ならば波表面に泡や Ripple が存在するため
可能であったが、外側では鏡面反射が強すぎて良好な画像が得られなかったとのことである。筆者らのRLD法は、逆に表面がスムーズである必要があり、砕波や大傾斜を苦手としているが、彼らはステレオカメラ法での計測が困難な領域に使えるのではないかと興味をもってくれた。
なお、この会議でわかったことだが、HTAのWEBサイトはわれわれ外部の人間にはただの概略しか表示されないが、メンバーはこのサイトを利用して、データや資料のやり取りを行うためのワークスペースとして有効活用しているようであった。

表 2.3.1 JRP 3 会議出席者リスト

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>国</th>
</tr>
</thead>
<tbody>
<tr>
<td>(リーダー)Dr. Carl Trygve Stansberg</td>
<td>MARINTEK</td>
<td>Norway</td>
</tr>
<tr>
<td>Dr. Cornel Thill,</td>
<td>DST</td>
<td>Germany</td>
</tr>
<tr>
<td>Mr. Arthur Bouvy</td>
<td>MARIN</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Dr. Jean-Paul Borleteau</td>
<td>SIREHNA</td>
<td>France</td>
</tr>
<tr>
<td>Mr. Maxime Ollivier</td>
<td>SIREHNA</td>
<td>France</td>
</tr>
<tr>
<td>Dr. Didier Fréchou</td>
<td>Bassin d’Essais de Carènes</td>
<td>France</td>
</tr>
</tbody>
</table>
※ この他、前出のDr. Sébastien Fouques（MARINTEK）とDr. Janou Hennig（MARIN）がメンバーである。

図 2.3.3 SIREHNA にて
(JRP3 のメンバー)
2.3.2.4 INSEAN

INSEAN では、26 期 ITTC の Detailed flow measurements のメンバーである Dr. Mario Felli、JRP6 のメンバーである Dr. Francisco Pereira を訪問した。Felli 氏には、INSEAN のこれまでの PIV の概要について紹介してもらった。

プロペラと舵の干渉、チップボルテックスによるノイズの計測、航空機 (エアバス A380) の翼端渦、潜水艦後尾付加物による流場改善などの例を見せてくれた。

この他、曳航水槽での粒子のシーディング方法、ノイズ・振動対策、また模型によるレーザー光の反射問題とその改善方法について、実際の装置を見せてもらいながら、意見交換をした。粒子については、酸化チタン (TiO2) を用いており、曳航水槽でのシーディングは MARIN と同様にする場合と、散布しながら走行する場合とがあるとのことである。

PIV システムは、曳航水槽の壁面に固定して計測する場合と、システム自体を曳航しながら測定する場合の二つが可能である。航空機の翼端渦計測の場合は、壁面に PIV システムを固定し、航空機模型を曳航させたそうである。

さて、レーザー光の模型表面での反射は撮影範囲に影領域を発生させるため、PIV 計測ではしばしば問題となる。Felli 氏は、水と同一の屈折率を持つ特殊な樹脂で作られた舵模型を用いて影領域の発生を抑えることを試みていた。

なお、Felli 氏との会話で JRP7 の内容についても一部知ることができた。残念ながら JPR7 の INSEAN 担当者は多忙なため面会できなかったが、プログラムの一部として感圧フィルム (Surface Stress-Sensitive Film, S3F) のデモ実験を今年の四月に実施する予定とのことである。従来の感圧塗料 (PSP) は酸素に反応であるため、水中で使用することができない。しかし、この感圧フィルムは、水中でせん断力分布と圧力分布を画像から同時に取得することが可能である。計測には LED ライトとフィルム、カラーカメラを用いる。Felli 氏もこの実験に関わっているとのことと関連文献をいただいた。手始めに舵に装着してテストする予定とのことである。

Pereira 氏には Defocus-PIV について紹介してもらった。Defocus-PIV はカリフォルニア工科大学で開発されたもので、紡余曲折を経て現在 TSI が商品化し販売している。これは、カメラレンズの焦点ズレ量を利用して奥行き方向の情報を得る方法である。これにより、流場の 3 次元構造が明らかになるだけでなく、気液界面を Volumic に捉えることができるためガイド率の計測も可能である。

トレーサーやレーザーは PIV と同様のものを用いることができ、3 つのカメラで粒子追跡をする。アルゴリズムは 3 つあるが、現在は Trajectory を追跡するシンプルで高速なアルゴリズムを使用している。4 CPU のマシンを使うので解析時間は短い。Tolerance をどれだけ与えるかで Data rate は変わるが、およそ 150 m³の領域内で 4000 個のベクトルが得られ、奥行き方向測定の不確かさは、数十ミクロンのオーダーとのことである。

Pereira 氏は、早ければ 3 ヶ月後に回流水槽で Defocus-PIV を稼働させたことに問題点を洗い出していた。
2.3.2.5 HSVA

HSVA では Jürgen Friesch 氏、Herbert Bretschneider 氏、Gerd Lammers 氏とお会いし、高速度カメラの利用状況、PIV の現状について聞いた。まず、Friesch 氏には HSVA での計測技術の現状について聞いて聞いた。水槽試験だけでなく実船試験やフルスケールに近い計測について積極的に取り組んでいる印象をもらった。

つづいて、Bretschneider 氏には HSVA の各施設を案内してもらい、高速度ビデオカメラシステムの概要とその計測例について紹介してもらった。気泡の生成と崩壊、実船でキャビテーションを撮影した画像などを見せてもらった。実船での撮影では、船主の協力を得て観測窓を船尾に設置し、照明は日光のみで日光が差す時間を利用して行ったそうである。

Lammers 氏には PIV の計測事例とシーディング等の対策について教えていただいた。ここでも、エアバス A380 の翼端渦の計測を見せてもらった。航空機の実験といえば風洞を思い浮かべるが、水槽試
2.3.3 おわりに

以上の調査結果をまとめると、PIV計測においては従来型波高計を格子状に配列することによる面計測、およびそれらデータを用いた波形解析への移行をめざしている。画像計測法としては、ステレオカメラ法の導入を試みている。しかし、船体近傍は波表面にマーカーが存在するため、左右カメラ画像間の対応付けは可能であるが、外側ではスムーズであるため困難である。

ステレオPIV計測に関しては主要水槽では既に導入済であり、精度を各機関で相互検証する段階までに至っている。費用対効果でLDVに比べ問題とされていた、レーザー光の影響が発生と反射問題も屈折率整合法により解決の方向へ向かっている。これにより、ルーティンワーク化への障害はなくなりつつあると考えられる。

また、Defocus-PIVの導入により、速度場やキャビティ体積のVolumetric計測も試みられつつある。
る。今後、従来のキャピテーションスケッチ等に代わる有効な手法となると思われる。

謝辞

本調査は、日本財団助成事業 日本船舶海洋工学会「若手研究者・技術者海外派遣制度」により行われた（調査内容「欧州の水槽試験における先進的計測技術に関する動向調査」）。関係各位に感謝申し上げる。
3. 試験法についての国内外の動向

3.1 国内試験水槽の動向

3.1.1 海技研

海上技術安全研究所 児玉良明

表 3.1.1.1 に、従来から海技研がもつ主な試験水槽設備を示す。

海技研では、海洋構造物の深海係留問題を実験するために、全周に 128 基の造波板をもち世界で最深の深海水槽が平成 14 年に完成した。また、平成 22 年度の完成を目指して、風波浪中での自由航走実験が行える、全周に造波板をもつ実海域再現水槽を建設中である。共に表 3.1.1.2 に示す。

<table>
<thead>
<tr>
<th>名称</th>
<th>400m 試験水槽</th>
<th>中水槽</th>
<th>キャビ試験</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用途</td>
<td>曳航水槽</td>
<td>曳航水槽</td>
<td>キャビ試験</td>
</tr>
<tr>
<td>主要</td>
<td>長さ 400m</td>
<td>長さ 150m</td>
<td>高さ 10m</td>
</tr>
<tr>
<td>目</td>
<td>幅 18m</td>
<td>幅 7.5m</td>
<td>長さ 18m</td>
</tr>
<tr>
<td></td>
<td>水深 8m</td>
<td>水深 0.2〜3.5m</td>
<td>No.1 計測部: 0.75m φ × 2.25m</td>
</tr>
<tr>
<td></td>
<td>曳引台車最高速度 15m/s</td>
<td>曳引車速度最大 5m/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>名称</th>
<th>氷海船舶試験水槽</th>
<th>海洋構造物試験水槽</th>
<th>変動風水洞</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用途</td>
<td>氷中航行試験</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要</td>
<td>長さ 35m</td>
<td>長さ 40m</td>
<td>(風洞計測部)</td>
</tr>
<tr>
<td>目</td>
<td>幅 6m</td>
<td>幅 27m</td>
<td>長さ 15m, 幅 3m, 高さ 2m</td>
</tr>
<tr>
<td></td>
<td>水深 1.8m</td>
<td>深さ 2m</td>
<td>最大風速 30m/s (水槽部)</td>
</tr>
<tr>
<td></td>
<td>結氷速度 2.5mm/h</td>
<td>X-Y 曳航台車</td>
<td>長さ 15m, 幅 3m, 水深 1.5m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>造波装置、送風装置</td>
<td></td>
</tr>
</tbody>
</table>
表 3.1.1.2 海技研の深海水槽と実海域再現水槽

<table>
<thead>
<tr>
<th>名称</th>
<th>深海水槽</th>
<th>実海域再現水槽(平成22年度完成予定)</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真</td>
<td></td>
<td></td>
</tr>
<tr>
<td>用途</td>
<td>海洋構造物の深海係留実験</td>
<td>風波浪中での自由航走実験</td>
</tr>
<tr>
<td>主要目</td>
<td>最大水深 35m(当時世界最深)</td>
<td>長さ 80m</td>
</tr>
<tr>
<td></td>
<td>上部 直径 14m、深さ 5m</td>
<td>幅 40m</td>
</tr>
<tr>
<td></td>
<td>ピット部 直径 6m、深さ 30m</td>
<td>深さ 4.5m</td>
</tr>
<tr>
<td></td>
<td>造波装置、潮流発生装置、水中 3 次元挙動計測装置</td>
<td>X-Y 引台車、全周分割吸収造波装置、送風装置</td>
</tr>
</tbody>
</table>

3.1.2 防衛省

フローノイズシミュレータ（以下、FNS とする）は、艦艇分野における重要課題である流体雑音低減の研究に不可欠な大型模型を運用可能な実験設備として、2005年3月に防衛省技術研究本部艦艇装備研究所に建設された極低背景雑音の大型キャビテーション水槽である。

FNS には、ノンキャビテーション状態も含めたプロペラ流体雑音を高精度で計測可能とするために、さまざまな低雑音化対策が取り入れられている。その結果、計測胴の背景雑音は、流速 8m/s において 88 デシベル以下（1/3 オクターブバンド、中心周波数 1kHz、基準値 1μPa）と、世界最高水準の極めて低い背景雑音レベルに抑えられている。

最大の雑音源の一つと考えられる回流ポンプは、FNS の流速・圧力の運用条件においてキャビテーションフリーとなる、直径 4.3m の 7 翼前進スキーのインペラを用いている。さらに、回流ポンプで発生した流体雑音は、下部管路両端に管路を取り囲む形で設置された吸音塔と呼ばれる筒状の水槽で吸音される設計となっているのが特徴である。また、計測胴では、内部に吸音材を備えた音響トラフを計測胴の周囲に設置することで、もう一つの大きな雑音源である境界層雑音の残響抑制を図っている。

音響計測システムは、底面と側面の音響トラフに各 32ch ずつ合計 64ch のハイドロホンにによって構成されたハイドロホンアレイと音響計測解析システムを備えている。ハイドロホンアレイは、指向性を持った音響ビームを形成し、計測対象音源の位置探査精度と境界層雑音との S/N の向上をねらって、最も音響ビームが鋭くなるように不規則なハイドロホンの配置を採用した結果、5kHz において 0.5 波長以内の精度で音源探査が可能である。

IHI 長屋茂樹
計測胴は、実艦の縮尺模型（全長 6m）を設置できるように、計測胴は長さ 10m、1 辺 2m の正方形断面の大きさを有している。計測胴の流速範囲は 1.5～15m/s で、流速 5m/s における計測胴中央の非一様性は±1％以下、乱れ度は 0.5％以下と、均一性の高い流れを実現している。流場計測システムとしてレーザー出力 10W の後方散乱式 2 次元 LDV システムを備えている。計測胴での圧力は、計測胴上面で絶対圧 10～300kPa に設定可能で、広い範囲でのキャビテーション試験が可能である。また、キャビテーション気泡核と呼ばれる水中の微小な気泡を計測する装置として、ベンチュリ方式のキャビテーション感度計（CSM: Cavitation Susceptibility Meter）を備えている。

このように、FNS は大型の計測胴と高い流速、高精度の音響計測および流体計測を行うための計測装置を備えており、艦艇技術開発だけでなく、たとえば高レイノルズ数での流体現象解明など、さまざまな実験への応用が可能な試験設備である。

図 3.1.2.1 Overview of the Flow Noise Simulator

参考文献
・ 三島茂徳、"音響回流水槽"、日本船舶海洋工学会誌「咸臨」第 4 号、2006 年 1 月
3.1.3 水産工学研究所

水産工学研究所

2007年度に水産工学研究所では海洋工学総合実験棟に航行軌跡計測装置を新設したので、その概要についてご紹介する。

(1) 背景

漁船が転覆に至るような危険な現象のひとつとして追波中を高速で航行する際のブローチング現象、バウダイビング現象などがあげられる。これらの現象は強非線型現象であり、自由航走転覆模型実験が不可欠な研究手法となっている。水産工学研究所の海洋工学総合実験棟において、過去に13隻の模型船を用いた自由航走転覆模型実験を実施した。それらのデータの一部はITTCのベンチマークの基礎データとして使用されるなど、高い評価をいただいている。

現在までの自由航走転覆模型実験用システムは大阪大学で開発されたTele-Teleシステムを改造したもので、ジャイロの出力を収録することを基本として、舵とプロペラをコントロールするシステムであり、データとしては横揺れ、縦揺れ、船首方位の3つの角度及び角速度と舵角、プロペラ回転数を取得するのみであり、模型船の位置を計測するためには、ビデオトラッカーなどの装置を別途必要としている。

(2) 航行軌跡計測装置の特徴

漁船の高速化に伴い、模型船においても小型化と高速化が不可欠である。また、漁船は2艘で曳網したり、活魚運搬船を曳航する場合もある。そこで、本装置では実験効率等も踏まえ、下記のような特徴を持たせることとした。

1) 1日(8時間)電池交換なしに実験が行えること。
2) 位置データと船体運動等のデータを同時収録すること。
3) 大傾斜(60度以上)しても位置の取得が可能であること。
4) 2隻以上の模型船で同時にそれぞれの位置データを収録できること。
5) 電池込みでモータ等まで含め20kg以下であること。
6) データ収録および制御に関して拡張性があること。

(3) 実験装置

水産工学研究所の海洋工学総合実験棟は長さ60m×幅25m×深さ3.2mの水槽に80台の造波機及び曳引台車を備えた実験施設である。その鳥瞰図を図3.1.3.1に示す。航行軌跡計測装置は水槽に設置された3つの超音波発生装置と模型船に搭載された受信機、収録装置、制御装置からなる。その概念図を図3.1.3.2に示す。現在、実線部分を製作済みであるが、将来は点線部分まで機能拡張を行うことが可能である。
図 3.1.3.1 海洋工学総合実験棟

図 3.1.3.2 実験装置概念図
通常の超音波を用いた位置検出装置は模型船側から超音波を発信し、水槽のセンサーで検知し、位置を計測している。しかしながら、本装置では複数の模型船で同時に位置データを取得することと船内のデータ収録装置に位置データを収録することを目的として、水槽内に超音波発信器を配置し、模型船にセンサーを取り付けている。これらの特徴から、それぞれ下記のような長所と短所がある。

・ 通常の装置

長所
・ 1つの超音波で位置が測定できるので測定間隔を短くし易い
・ 水槽内にセンサーを多数配置することで精度を上げやすい
・ 船内に搭載する装置を超小型化することが可能

短所
・ 船内で位置データを収集するためには無線電送が必要
・ 複数の模型船で位置を計測するのは不可能ないし、複雑な拡張が必要
・ 模型船に発信器が1つしかないため、大傾斜時は位置計測が不能

・ 本装置

長所
・ 理論上、無制限の模型船の位置が同時計測可能
・ 直接、船内で位置を収録できるので無線装置が不要（=省電力）
・ 模型船にセンサーを複数つけることで大傾斜時も位置計測が可能

短所
・ 3種類の超音波を順番に発信するため、測定間隔を短くし辛い
・ 水槽に発信器を3つしか設置できないため、測定精度を上げにくい

(5) 実際の装置

模型船に搭載する主な機器を図3.1.3.3に紹介する。右側の細長いものが位置計測装置で、模型船内任意の位置に取り付けた3つのセンサーから得られた超音波信号を計測し、それぞれのセンサーの位置を出力し、ジャイロのデータと共に中央下段のコンピュータによって取録する。このコンピュータは舵角及びプロペラ回転数をコントロールできるようになっており、各種データを元にオートパイロット、旋回試験、Z試験等を行うことができる。
一方、船体に取り付けてあるセンサーを図 3.1.3.4 及び 3.1.3.5 に示す。この模型船においては、重心位置と同じ前後位置において、船底及び左右舷の 3 カ所に取り付けており、どのように傾斜をしても必ず 1 つのセンサーは水中にあることで、超音波信号を検知することが出来るようになっている。

図 3.1.3.4 船底に取り付けたセンサー
図 3.1.3.5 右舷に取り付けたセンサー

(6) 実験結果
調整を兼ねた実験を現在までに 2 度実施している。しかしながら、現在も若干の調整を行っており、計測結果の公表は差し控えたい。ただし、自由航走転覆模型実験で重要となる波長船長比 1.5、波高波長比 1/10 の極限状態の波浪中においても、位置の取得は可能であることは確認している。

(7) まとめ
水産工学研究所の海洋工学総合実験棟において、航行位置計測装置を導入した。これらの装置を用いて、極限状態の波浪中においても位置が計測できることを確認した。今後はこの装置を使った成果を紹介していきたい。
3.1.4 九州大学

九州大学工学部の箱崎キャンパス（福岡市東区）から伊都キャンパス（福岡市西区）への移転に伴い、平成19年に高速回流水槽と船舶運動性能試験水槽が新設された。両新水槽は、図3.1.4.1に示す船舶海洋性能工学実験棟（EN80）内に設置されている。

(1) 高速回流水槽

箱崎キャンパスに設置されていた曳航式の船型試験水槽（長さ118m×幅2.67m×水深3〜5m）に代わる設備として設置された高速回流水槽は、長さ約21m、幅約3m、高さ約7m（観測部は長さ6m、幅2m、水深1m）であり、高速船の研究にも対応できるように、最大流速を国内最高レベルの3.3m/secと設定している。なお流速は、0.1m/secから最高流速まで0.001m/sec刻みで設定できる。循環方式は2インペラ垂直循環式であり、表面加速装置、定在波抑制装置および水位自動調整装置を備えている。図2.1.4.2に概略図を示す。

水槽内の流れについては、流速1.5m/secにおいて観測部前方の制波板端部より後方1m位置の断面の流速分布は±2.0%以下の均一性が保たれている。また同じ設定流速において水槽観測部の中心線上での定在波の波高は±2mm以下である。

図3.1.4.3に高速回流水槽の観測部、図3.1.4.4に高速回流水槽における模型試験の様子を示す。
第3章 試験法についての国内外の動向

(2) 船舶運動性能試験水槽

箱崎キャンパスに設置されていた旧船舶運動性能試験水槽（長さ 28m×幅 25m×水深 1.5m）に代わる設備として設置された船舶運動性能試験水槽は、全体寸法が長さ 38.8m×幅 24.4m×水深 2m であり、副電車（最大速度 1.2m/s）とターンテーブル（最大旋回角速度 30deg/s）を有する曳航電車（最大速度 1.2m/s）が設置されている。また、水槽の短辺（1面）には、プランジャー型の分割式造波装置（最大波高 0.3m，最大波長 12.0m）が設置されており、規則波および不規則波を生成することができる。
水槽の底面の仕上げ精度は、水槽全面にわたって±2mm であり、水槽内の水位を浅く設定することにより、浅水域を対象とした実験を実施することが可能となっている。

図 3.1.4.5(a) に水槽本体と曳航電車、図 3.1.4.5(b) に造波機による造波の様子を示す。

(a) 水槽本体と曳航電車 （b）造波機による造波の様子

図 3.1.4.5 船舶運動性能試験水槽
3.1.5 大阪大学

大阪大学 眞田 有吾

(1) はじめに
ここでは、大阪大学で開発中の新しい波高分布計測法である水面反射光法について紹介する。
波高分布を写真でとらえる試みはこれまで我が国において数多くなされている。金井は、水面上にアルミ粉を散布し、格子パターンを投影するグリッド投影法を提案している。鈴木・住野らは、水面上に光源を設置し、水面上に設置したスクリーンの明暗分布から波高分布を取得できる方法、水面透過光法（PLD 法）を提案した。最近では、村井が乳白色で着色した水を用いて陰影によって波高分布を取得する方法を提案している。
波高分布を画像計測するには、まず本来は目に見えない水面自体を可視化する必要がある。従来は、着色した水を用いるか、水面にトレーサーを散布するなどの方法が多くとられてきた。しかし、これを数百メートル級の曳航水槽で行うには多くの時間と労力を必要とする。鈴木・住野の水面透過光法は、トレーサーの散布こそ必要としないものの、水面下に光源を設置するという難作業が伴い、これが実用化の障害となっていた。
以上の問題を解決し、完全非接触で波高分布をとらえることができないか、ということで考案したのが大阪大学で開発中の水面反射光法（Reflected Light Distribution Method、RLD 法）である。レーザーやプロジェクターからの直接光は水面を透過するが、シーリングライトのように拡散面を通した間接光は水面で鏡面反射するという性質がある。

図 3.1.5.1 拡散面光源の反射像（左：静水面、右：波面）

この性質をうまく利用することで、水面を鏡面に見立てることができる鏡面に写った像（反射像）の変化を画像によってとらえることで、波高分布を計測することができる。たとえば、図 3.1.5.1 はグリッドパターンを拡散面光源で水面に投影し、波面を可視化した例である。
この方法は水槽の水を汚濁することなく、完全非接触で波高分布をとらえることができるため、現在大規模曳航水槽での実用化を目指して開発を進めている。

(2) 計測原理
ここで、水面反射光法の原理を 1 次元モデルで説明する。
図 3.1.5.2 RLD 法の計測原理

図 3.1.5.2 に示すように x - z 座標系をとり、カメラ位置を O_c 、面光源上のある 1 点を O_s とする。ここでカメラはピンホールカメラとみなすことになる。静水面 ($z = 0$) の場合は、O_s から出た光が点 P_0 で反射し、カメラへ向かう。カメラ高さと面光源の高さが既知であれば、P_0 から O_s を決定できる。一方、波面 $z = \zeta(x)$ の場合は同じく O_s から出た光は点 P で反射し、カメラへ向かう。このとき、ベクトル a および b を(1)式で定義する。

$$
\begin{align*}
 a &= \begin{pmatrix} -x \\ z_c - \zeta \end{pmatrix} \\
 b &= \begin{pmatrix} x_c - x \\ z_s - \zeta \end{pmatrix}
\end{align*}
$$

(1)

点 P での波面の法線ベクトルを n とし、a と b を用いてベクトル u を(2)式のように定義する。

$$
\begin{align*}
 u = \frac{a}{|a|} + b = \begin{pmatrix} u_x \\ u_z \end{pmatrix}
\end{align*}
$$

(2)

波面に対する光線の入射角と反射角は等しいため、u と n は必ず平行となる。よって次の(3)式が成り立つ。

$$
\begin{align*}
 u \times n = 0
\end{align*}
$$

(3)

これより、点 P での勾配は次の(4)式のように u の成分を用いて表わされる。

$$
\begin{align*}
 \frac{\partial \zeta}{\partial x} = -\frac{u_x}{u_z}
\end{align*}
$$

(4)

カメラのキャリブレーションを静水面で行った場合、このカメラからは波面上の反射点 P (ここでは、「真の反射点」とよぶ) は、あたかもカメラの光軸と $z = 0$ の交点 P' にあるかのように見える。この P' をここでは「見かけの反射点」と呼ぶことになる。真の反射点 P は O_c と P' を結んだ直線上に必ず存在するので、反復計算を行うことで求めることができる。つまり、静水面時に点 P_0、波面形成時に点 P' の位置をそれぞれ撮影画像から取得できれば、真の反射点 P が求まり、この点での波高を再構成できる。

ステレオカメラ法は複数のカメラ（多くは二台）を用いて計測を行うが、この方法では各カメラで取得した画像間の対応付けをとる必要がある。対応付けが良好になされるためには、水面に模様があることが重要であり、多くの場合トレーサーが散布されている必要がある。RLD 法の場合は、反復計算が必要ではあるものの、1 台のカメラで反射像の変形を元に三次元情報を取得できる。そのため、カメラの台数分だけ撮影範囲の拡大が可能という利点がある。
第3章 試験法についての国内外の動向

(3) 実験装置の概略と計測例

実際の例として、大阪大学船舶海洋試験水槽で実施した Wigley 船型の航走波計測を紹介する。図3.1.5.3 は計測装置の概略である。RLD 法では、カメラ、拡散面光源（ここでは、乳白色アクリル板にプロジェクターでパターンを投影）である。今回は投影するパターンとして、カラーグリッドパターンを使用した。

図3.1.5.3 実験装置の概略

図3.1.5.4 は実験時に取得した反射画像の例である。図3.1.5.4(a)は静水面の場合、図3.1.5.4(b)は波面の場合である。鏡面である波面が変形することによって、反射像も大きく変形することがわかる。

(a) 静水面 (b) 波面

図3.1.5.4 反射像の例

図3.1.5.4 の(a)と(b)から、反射像の変位を求めたものが図5 である。白色ベクトルで変位方向と大きさを示す。波の勾配が緩やかなところは、変位ベクトルは小さく、逆に勾配が急なところでは変位ベクトルが大きくなっている。図3.1.5.5 の変位ベクトルから波の勾配を求める勾配から波面を再構成法した結果を図3.1.5.6 上のコンター図で示す。Wigley の波紋が良好にとらえられていることがわかる。
応用例として、RLD 法で計測された船体近傍の波面勾配データを元に波形解析を行った例を図 3.1.5.6 に示す。RLD 法では、水槽壁面からの反射波の影響を受けない範囲のデータを高密度に取得できるため、従来の縦切り法で行われる Newman 修正などを施さなくても、遠方の波形が再現できる。このように RLD 法は、波のもつ膨大な情報を一度に捉えることができるため、従来から行われてきた波形解析と組み合わせることで、新しい船型開発ツールとして活用できるようになると期待される。現在取得できるのは定常データのみであるが、将来的には連続画像を用いた非定常計測に拡張することで、波浪中抵抗増加などの諸問題を解明する有用なツールとなりうる可能性がある。

（4）おわりに

大規模曳航水槽で利用可能な水面反射像を利用した新しい波面計測法である水面反射光法を紹介した。今後は装置の小型化や非定常計測への拡張などに取り組む予定である。
第3章 試験法についての国内外の動向

参考文献

1) 金井誠, グリッド投影法による波形解析, 関西造船協会誌, 第193号, 1984年6月, pp.127-135
2) 鈴木敏夫・住野和哉, 水面透過光の明暗分布を利用した波高計測, 関西造船協会誌, 第220号, 1993年9月, pp.105-110
3) 村井基彦・井上義行・武居弘基・鴫原健・東原克成・山下真史, 小型水槽実験に於ける波浪場の可視化および計測法に関する研究, 日本造船学会論文集, 第195号, 2004年6月, pp.171-178
3.2.1 Resistance Committee

Particle Image Velocimetry (PIV)

PIV は、流場中に何らかの粒子を散布し、レーザー光を照射して、その反射光から粒子の移動速度を検出することにより流速分布を得る手法である。この方法は、かなり一般的な計測法となりつつあるが、CCD カメラ・レーザー光源・データ処理用コンピューター等の設置に広いスペースを要することから、曳航水槽等の狭いスペースで使用することは必ずしも容易ではないが、これを克服する試みも行われている。

Atsavapranee et al. (2004) は、曳航水槽で長さ 5.27m 潜水艦型模型 (ONR Body-1) に作用する圧力分布・流体力を計測するとともに、PIV で渦および破面を含む速度場の計測を行っている。また Chen and Chang (2006) は曳航水槽において模型船まわりの速度場を計測する PIV システムを開発している。いずれの研究でも、限られたスペースへの対策として移動式の PIV が有効であることを示している。

Foeth et al. (2006) は、水中翼表面で発生するキャビテーションに伴うレーザー光の乱反射を取り除くために、蛍光トレーサーを用いた PIV 計測を試みている。また Ryu et al. (2005) は、気泡を大量に含むためレーザー光の乱反射が生じて計測が困難であった砕波や汚濁水中の速度場を、PIV を改良した Bubble Image Velocimetry (BIV) により計測している。この方法では粒子の代わりに、水中に存在する気泡をトレーサーとし、気泡の移動速度計測するものである。

Particle Tracking Velocimetry (PTV)

PIV が複数の粒子の挙動から速度場を計測するほうであるのに対して、PTV は単一の粒子の移動を追跡することにより、速度場を光学的に計測する方法である。

Hoyer et al. (2005) は、レーザー光を用いた 3 次元 PTV の実験方法およびデータ処理方法を提案している。この方法は、個々の粒子の移動をラグランジェ的に追跡して速度場を求める方法である。また Lee et al. (2005) は、5 翼船用プロペラの後流中における乱流を 2 画面 PTV と PIV のハイブリッド法に計測している。この方法は回転するプロペラ前後で公称伴流および有効伴流を計測することに適用できる。

Laser Induced Fluorescence (LIF)

LIF は、分子構造の解析や流れの可視化に用いられてきた分光分析による方法である。流体中に散布したレーザー誘起蛍光物質で染色されたトレーサーを用い、レーザーの照射によって生じるトレーサー
からのレーザー誘起光を、その波長に応じた透過フィルターを通して撮影し、PIV または PTV の手法により速度場を得る。

Troy and Koseff (2005) は、内部進行波の定量化に LIF を適用することを提案している。LIF は乱流の性質や、砕波やキャビテーションのような混相流の解明に役立つと思われる。

Laser Doppler Velocimetry (LDV) and Acoustic Doppler Velocimetry (ADV)

LDV は計測したい位置に複数のレーザー光を照射して、その位置を通じる粒子に反射して生じるレーザー光の干渉縞を検出することによって速度を計測する方法である。流れに垂直な方向に干渉縞が生じるように設置したレーザー光の交差点を粒子が通過すると、粒子の速度に応じたドップラーシフトを伴ったレーザー光の反射が生じるので、これを計測することにより粒子の速度を得ることができる。

ドップラーシフトを利用する同様な計測方法として ADV があるが、これはレーザー光の変わりに音波を用いるものである。いずれの方法も、流場中のある 1 点の速度のみしか計測できないが、時間分解能が高く、またキャリプレーションが不要であるという利点があり、壁近傍の計測や実船尺度の計測に適用されている。Cea et al. (2007) は、自由表面流れにおける瞬時の 3 次元流速の計測に、ADV を用いている。また Millward and Brown (2005) は、

その他の計測技術

Millward and Brown (2005) は、曳航水槽中の航走模型船の実浸水表面積を計測する方法として、模型船表面を金属性の塗膜で覆い、その電気容量の変化から検出することを提案している。また Song et al. (2007) は、砕氷船の氷中試験に合成氷を用い、通常氷と一致するデータが得られることを示している。

(2) Wake and Pressure

伴流分布

船体や推進器後流中の速度場の計測には、PIV が最もよく用いられている。Paik et al. (2007) は、高レイノルズ数の 4 翼プロペラ後流中で、PIV により速度場の計測を行っている。

PIV はキャビテーションを伴う流れにも適用されており、Wosnik et al. (2006) はキャビテーションを伴う 2 次元翼の非定常伴流を PIV で計測し、乱流構造を確認している。

Perrin et al. (2007) は、ステレオ PIV により円柱後流の乱流構造を調査している。さらに、Jung et al. (2006b) は、風洞でウォータージェット模型について、大域的な流れの構造や乱流の挙動を Proper Orthogonal Decomposition (POD) により調査している。また Perret et al. (2006) は、多面ステレオ PIV により乱流中の加速構造を観測している。

一方、Felli and Felice (2005) は、大型回流水槽で 2 軸船のハイスキュープロペラまわりの流れを、プロペラの回転角に応じて計測点を移動できる LDV により計測している。

Pressure Sensitive Paint (PSP) in a Wind Tunnel

PSP は圧力応じて色相等が変化する感圧物質を含む塗料である。風洞実験で物体表面に PSP を塗布しておくと、圧力分布を大域的に計測することができる。

(3)Wave Breaking and Wave Profile Measurements
波形計測や砕波を含む波に関する現象の解明のために、各種の計測方法が試みられている。
Karion et al. (2004)はレーザー光を用いて、2種類の船首について船首波の形状を0.7～4.6m/sの範囲で計測し、自由表面形状の変動と砕波領域の関係を調査している。Rice et al. (2004)は、模型船の近場および遠場の波形を、波形解析・波高計・写真撮影等の複数の方法で計測し、さらにこれを実船計測に適用することを試みている。
またJung et al. (2005) およびJung et al. (2006a)は、2次元造波水槽において角型浮体近傍の速度場をPIVにより計測し、平均速度および乱動成分を位相平均法によって算出することにより、浮体から発生する渦と波の周期の関係を示している。
Stern et al. (2006b)は、砕波についてLDVおよびPIVを用いた流場計測を行い、その結果をCFDの結果と比較している。またNoblesse et al. (2006)は平板が直進する際にできる波を計測している。さらにTerrill and Taylor (2007)は、実船においてLIDAR (LIght Detection And Ranging)を用いて波高分布を計測している。

(4)Full Scale Tests
Sur and Chevalier (2004)は、実船において船速1.0～7.7m/sの範囲で、砕波に伴って生じるスプレー飛沫を高速度ビデオカメラで撮影することにより計測している。またStarke et al. (2006)は実船伴流を、船体に取り付けたLDVにより計測し、数値計算結果の検証に利用している。
Fu et al. (2006)は、船首および船尾付近の自由表面形状・船首の飛沫・船体まわりの空気巻き込みと気泡挙動を、11個の計測システムと水上7個・水中3個のカメラが使用して水中翼つき双胴船の実船で計測している。計測では6～12ktまで船速を変化させ、水中翼表面への高分子物質の吹き出しにより、粘性抵抗が60%以上減少することを確認している。またTerrill and Taylor (2007)はLIDAR (LIght Detection And Ranging)を用いて艦艇(Sea Fighter)まわりの波高分布を実船で計測している。

参考文献

Predictions for Ships at Full Scale”, Proc. 26th Symposium on Naval Hydrodynamics, Rome, Italy.

3.2.2 Propulsion Committee

九州大学 安東 潤

25期のPropulsion Committeeでは、recommended procedureのうち、7.5-01-02-01[Terminology and Nomenclature of Propeller Geometry], 7.5-02-03-01.1[Propulsion Test], 7.5-02-03-02.1 [Propeller Open Water Test], 7.5-02-03-02.3 [Guide for Use of LDV], 7.5-02-05-02 [High Speed Marine Vehicles Propulsion Test]の見直しを行ったが、編集上の修正が主であった。

試験法ではないが、7.5-01-02-01[Terminology and Nomenclature of Propeller Geometry]においてプロペラの翼厚の定義をより明確にするための図が追加された。すなわち、プロペラ翼厚は一般的には翼弦線に対し垂直方向に計測されるが、NACAの定義による翼厚は翼平均線に対し垂直に設定されることを示す図である。それぞれを図3.2.2.1および図3.2.2.2に示す。

図3.2.2.1 展開された円筒形翼断面幾何形状の定義（翼厚が翼弦線に垂直な場合）
図 3.2.2.2 展開された円筒形翼断面幾何形状の定義（翼厚が翼平均線に垂直な場合）

なお 26 期は、7.5-02-03-01.1 [Propulsion Test] に、ボラードプル状態の試験法を含めよとの課題が課せられた。
3.2.3 Manoeuvering Committee

操縦性分野における新しい実験技術については、2008年福岡で開催された第25回国際水槽試験会議（ITTC）操縦性委員会報告の第7章で“New Experimental Techniques”としてとりまとめられている。ここではその翻訳をのせることで、操縦性分野における新しい実験技術についての報告としたい。

(1) はじめに

今日では、多くの努力が操縦運動の問題に関するCFDの適用可能性への検討に費やされており、操縦運動に関するモデル試験技術は、CFDの検証データのため、ますます必要なものとして展開している。

(2) CFD検証のための模型実験

操縦運動計算の検証研究は、主に、通常の拘束操縦運動模型試験の基本出力である船に作用するグローバルな力とモーメントを元になされてきた。実際には、このグローバルな比較には欠点がある。なぜなら、全体の力とモーメントの比較における計算と計測値の違いからは、根本の基礎に関する明確な証明を見つけることがほとんどできないからである。

より深い比較のためには、より局部的な特徴が適切に現れるようにすべきである。 Sung and al (2004) は、CFD検証に関する論文において、一般的な潜水艦形状の裸殻分割模型を用いて実施した実験について述べている。10断面で切断された長さ4.57mの模型に関する実験が、曳航水槽と旋回腕水槽の両方で行われた。曳航水槽での試験は、迎角を90degまで付けながら、3つのレイノルズ数（4.7, 9.4 and 11.7 10^6）で行われた。旋回腕試験は、2つのレイノルズ数（7.0 and 11.7 10^6）で、そして無次元ピッチレートで0.15から0.3の4つについて行われた。計測は10の分割模型のそれぞれに作用する法線方向の力においてである。それらの実験に関するデータは計算の検証の目的に利用できる。

水上船と水中物体の操縦運動は大きな渦と流れの攪乱を造る。これらの複雑な流れの理解は、一般に操縦運動予測の改良のために要求される。さらに、船の成分要素、特に、プロペラや舵の作動による操縦運動によって生み出される流れの影響に関する研究においても、要求が高まっていることに気付かされる。

全船もしくは潜水艦について計測された力に加えて、船体に関する局部流れの詳細な計測が含まれるかもしれない。 Kume 等(2006)は長さ5mのKVLCC2模型に関する斜航試験を示した。そこでは、斜航角0, 6, 12degで行われた船体流体力、表面圧力、伴流計測が行われた。船体上に分布された約400点を越える圧力計測が8回繰り返され、平均値における圧力の等高線が示された。圧力計測に関する不確かさ解析（UA）が行われ、圧力計測における不確かさの主要因が圧力センサーのキャリプレーションラインから生じる標準的な誤差であったという結論を繰り返し計測によって導き出した。

並んで、流れ計測と画像解析技術が過去数十年において大きく進展した。2004年に“Workshop on Application of Particle Image Velocimetry to Naval and Industrial Hydrodynamics”がINSEAN(Di Felice 2004)によって開催された。このワークショップは、この航空機分野で生まれた技術が流体力学
第3章 試験法についての国内外の動向

へ示された希望に絵を描く好機となった。

過去数年にわたって、PIV計測は操縦性能分野で応用される円熟した技術になった。

Atsavapranee他（2004）は定常斜航角を付けた潜水艦について行ったPIV計測を示した。この実験におけるPIVシステムは次のようなものである：レーザーシート発生器とステレオカメラシステムは水槽の底部に固定され、模型はレーザーシートの間を通過する（図3.2.3.1）。従って、計測されたデータは没水した物体に沿う連続した平面分布流れの速度場特性である。

図3.2.3.2は12degの斜航角を付けた潜水艦セールの端部に発達する計測された渦の興味深い例を示す。その渦は、いわゆる「平面力の外部（out of plane forces）」につながる後半物体におけるクロスフローに影響を及ぼす。

図3.2.3.1: Earth fixed stereo PIV system for submarine static drift tests.
図3.2.3.2: Axial velocity and transverse velocity vectors
(Atsavapranee 2004)

Longo他（2006）はDTMB5415模型を用いて行われたPMM試験に関する非常に広範な論文を示した。試験では、プロペラ位置での非定常流れのPIV計測が行われた（図3.2.3.5）。この試験において、PIVシステムはPMM曳引車によって支持され（図3.2.3.3）、その調和運動の間に模型を追尾した（図3.2.3.4）。
PIVは等間隔のトリガーパルスによってPMM曳引車の運動に同期された。PMM曳引車が与えられた位置にくると最初のパルスが放射される。

航走は流れ場のデータが十分に収束し確かなものとなるように繰り返された。論文で述べられた力とモーメント係数の不確かさ解析に加えて、これら実験のセットは流れ場データの不確かさ解析の完成のための材料を提供している。

図 3.2.3.3 Stereo PIV system towed along a combatant model during PMM experiments (Longo and al. 2006) 図 3.2.3.4 Sketch of model and stereo PIV system path during a period of a pure yaw PMM run (Longo and al. 2006)
第3章 試験法についての国内外の動向

図3.2.3.5 Axial velocity contour during pure sway experiments (Longo and al. 2006)

Jurgens他(2006a)は浅水域を斜航するLNG模型周りの流れ計測にPIV技術を適用した。
実施は深水域に近い水深($h/T=5$)から非常に浅い($h/T=1.3$)の3つの水深において、2つの斜航角(10, 15deg)において行われた。PIV計測の不確かさに関する定量的な議論が報告され、模型周りの流れに及ぼすPIV計測器(probe)の明らかな影響が、計測器(probe)の有無による流体力計測を通して検知された。
ビルジ渦中心の横方向位置と非定常sway力の大きさの間の時刻歴ベースの興味深い比較が示されている（図3.2.3.6）。

図3.2.3.6 Time trace of sway force and transverse location of bilge vortex centre for 15°drift angle an h/T=1.3 (Jurgens et al., 2006b)

(3) 拘束模型試験
Gronarz(2006)は2つの台車を用いた浅水域における船間の干渉実験について述べている。試験は追い越しと出会いの操縦運動について行った。図3.2.3.7は追い越し操縦運動時の2隻のそれぞれに働く力とモーメントの時刻歴である。
Overtaken ship

図 3.2.3.7 Time trace of forces measured during model experiments of overtaking manoeuvre
(Gronarz 2006)

Overtaking ship

(4) 実船の操縦運動

Ueno et al. (2006) は操縦運動試運転時における滑走艇の6自由度運動計測に貢献するため、実時間キネマチック GPS の使用について言及した。艇に搭載した装置に加えて海岸に設置したアンテナを要求するこのモードは、従来の DGPS システムの精度を、垂直方向に 40mm、水平面に 20mm 以下に大きく改善する。直進航行時（図 3.2.3.8）およびの旋回時（図 3.2.3.9）の船体沈下とトリムの計測を可能とした。わずか数センチメートルに限られるが、垂直の変位に及ぼす旋回レート（舵角）の影響がはっきりと記録されている。

垂直変位における DGPS のキネマチックモードによって得られた解像度は、この技術がスコット検討にうまく適用できることを示す。そして、その特別な適用のための DGPS の使用が、“2nd Squat workshop 2004”におけるいくつかの論文に報告された。

図 3.2.3.8 Rise of the CoG of a planning craft measured with Kinematic DGPS during straight path (Ueno and al.)

図 3.2.3.9: Rise of the CoG of a planning craft measured with Kinematics DGPS during steady turn (Ueno
(5) おわりに
過去数年にわたり操縦性の実験における多くの努力が CFD 検証に費やされてきた。その目的のために発表された論文の多くが不確かさ解析を含むことは注目に値する。

ステレオ PIV は、操縦運動を行う船や潜水艦周りの複雑な速度場の 3 成分の計測が可能となる成熟した技術になってきた。

キネマチックモードの DGPS は、精度良く水平ならびに垂直平面の位置を計測するための有益な道具として使用できる。この垂直方向の計測は、スコットの実船計測への有効な応用であることが分かる。
操縦性推定における外挿法に関する研究の進展は報告されなかった。

参考文献

Di Felice, F. (editor), 2004 “Proceedings of the Workshop on Application of Particle Image Velocimetry to Naval and Industrial Hydrodynamics” INSEAN, Rome, Italy

Gronarz, A., 2006 “Ship-Ship Interaction: Overtaking and encountering of Inland Vessels on Shallow Water”, International Conference on Marine Simulation and Ship Maneuverability (MARSIM 06), Netherlands

Jurgens, A. Hallmann, R. and Tukker, J., 2006 “Experimental Investigation into the Flow around a Manoeuvring LNG Carrier on Shallow Water” NAV 06

Sung, C.-H., Rhee, B. and Koh, I. Y., 2004 “Validation of Forces, Moments and Stability Derivatives of a Manoeuvring Series 58 Bare Hull”, 25th Symposium on Naval Hydrodynamics, St John’s, Canada
Ueno, M., Nimura, T., Tsukada Y. and Miyazaki, H., 2006 “Experimental Study on the Manoeuvring Motion of a Planning Boat”, 7th Conference on Manoeuvring and Control of Marine Craft, Lisbon, Portugal

2004 “Aspects of Under Keel Clearance in Analysis and Application”, 2nd Squat Workshop, Oldenburg, Germany
3.2.4 Seakeeping Committee

IHI 伊東 章雄

造波装置や模型試験法として、新しく、改良された手法について紹介する。

内藤ら(1)は、円形水槽に取り付けた多分割のエネルギー吸収型の造波装置で、浮体の動揺試験を行なう方法を開発した。この造波装置を用いることで、すべての方向から同じ振幅と波や過渡水波を発生することができ、一回の波ですべての方向からの波浪中性能を取得することができ、運動応答の結果は、個々の運動応答を線形足し合わせした結果と一致することが確認された。

また、内藤ら(2)は、任意の方向からの不規則波を発生・吸収する高効率の吸収型造波装置を開発した。このシステムが最適な性能を発揮する水槽は、反射波の影響を受ける通常の角水槽ではなく、不要な波は吸収し、要求される波のみを発生できる水槽全周に吸収型造波装置を設置する方法である。この手法としてAdvanced Multiple Organized Experimental Basin (AMOEBA)と Element-Absorbing Wave maker (EAW)を提案した。ここでの造波信号発生法として、Bessel関数の直交性を用いた展開手法であるDini展開を用いることや、水槽内の任意に位置に波の集中点を作ることで、水槽内に文字や模様を描けることを示した。

図 3.2.4.1 吸収型造波装置(内藤ら(2))

模型試験は、全体荷重や局部荷重を求めるために有効な方法であり、様々な船型に対して行われている。分割模型の技術は適切な手法として、行われている。以下にその一例を示す。

Leguen and Fréchou (3),(4)は、フランスの新しい水槽「Bassin d'essais des careens (BEC)」: 長さ545m、幅15m、深さ7m」で、1/5スケールのフリゲート艦の模型（長さ25m）で、波浪中の荷重や性能の計測を行った。この特殊な試験の主な目的は船体運動と構造応答を予測するための設計手法の検証のためのデータを得るためである。模型の構造は、実船の構造と類似にすることで、模型は実船との剛性を相
似にし、同調モードを実船に合わせた。模型の曳航速度は実験で4m/sで、波は規則波中で行われた。波浪中の船体運動と模型船の変形量は、模型全体を計測システムに見立てて計測された。この試験では、様々な船速での横揺れ減衰力を計測すると共に、ホイッピングやスラミングの現象も観察された。

図3.2.4.2 Bassin d'essais des careens (BEC) の新しい水槽

Roussetら(5) は、同じ施設で、船の振動・桁材の疲労や最終強度に及ぼすスラミング荷重の影響を調査した。このプロジェクトは企業と公的な研究機関が連携して行われ、様々な実験と数値シミュレーションが行われた。ここでは、運動に関わるパラメータの全体荷重や局部荷重への感受性を実験的に研究した。

Fonsecaら(6) は、高速フェリーの4.4mの分割模型を用いて、向波規則波中の線形領域での試験で、付加質量や減衰係数と構造荷重を計測するための実験を行った。

Fonseca and Guedes-Soares(7)(8) はコンテナ船に対して、非線形領域での上下揺れ、縦揺れ、縦せん
第3章 試験法についての国内外の動向

断力および縦曲げモーメントの実験と数値計算の比較を行った。
実験は、異なる波傾斜での向波規則波中試験で、実験データからは強い非線形影響が確認された。ここでは、三次の同調モードを含めた規則波中の非線形縦荷重やサギングやホギングのピークに関する規則波振幅の影響、定常荷重の影響の影響などが注目された。

DessiとMariani (9), (10), (11)はホイッピングやスプリングングなどの弾性応答を評価するためのスラミング荷重を検証するために分割模型を用いた模型試験を行ない、実船試験の結果と比較した。

De JongとKeuning (13)は、大振幅の左右揺れと船首揺れの連成運動における非線形影響について、6自由度の強制動揺装置とフリゲート艦の7分割模型を用いて調査した。解析した実験結果は、特殊な船型に応用した波浪荷重の問題に対しても妥当な結果が得られた。

データ解析手法についても、検討が進められ、その一例を以下に示す。

Linら (14)は、SWATH船型の模型試験結果を基に、SWATH船型の設計荷重を評価する図示式を作成した。この図示式は、3000トン以下の小排水量の場合、模型試験結果に近く、より正確な設計荷重を求めることができる。これらは、SWATH船型の横強度、振り強度と縦強度解析のための荷重の種類と荷重の組み合わせを検討するために用いられる。これより、船体の構造重量と製造コストを大幅に低減できる見込みである。

井関 (15)はバイスペクトル解析を非線形船体運動の解析に適用した。
通常用いられるパワースペクトル解析は線形理論に基づくが、船体応答の非線形性的検討には効果的ではない。今回提案された高次のバイスペクトル解析は波形データにゆがみが見られる非線形船体応答の研究にふさわしい手法である。
ここでは、二次のVolterra型の非線形応答解析を例にした。追い波中の縦揺れ応答は、不安定な挙動を示し、この原因は縦揺れの非線形復原力の変化により導かれると推察される。

Chiuら (16)は、緩やかな衝撃や水が駆け上がる問題など入射角が大きいパウ付近や交互に水線面を横切ることで圧力が作用部分などの、船体表面の圧力応答の非線形形の挙動に注目した研究を行った。この問題にはVolterraモデルを適用することの妥当性を明らかにした。正面規則波と不規則波の実験を実施した。周波数応答関数を求めるために提案した手法を用いた近似の3次と5次Volterraモデルの検証に用いられた。規則波中の実験データから三次のVolterraモデルは、上記の船体表面部分に働く非線形な高い圧力に対して、有効であることがわかった。

南ら (17)は、異常な波浪衝撃を受ける船の応答について算定と実験による検討を行った。実験は、1/141.9のコンテナ船の弾性模型を用い、計算は非線形ストリップ法の時刻闇計算（SRSLAM）を用い
た。計算で用いた異常波は規則波の足し合わせにより数値水槽でモデル化されたもので、実験では、造波機と曳引車を同期させて波に当てた。

新しい計測技術として、以下に示す。

Ryuらの研究は、波の構造物への打ち込み速度の計測について実験的な研究を行った。対象は砕波や構造物を超えるような青波である。構造物周りの青波の速度分布はbubble image velocimetry (BIV: 気泡画像流速測定) 技術を用いて計測された。計測されたデータは次元解析手法で水平方向の青波の速度分布の推定式の算出に用いた。

パラメトリック横揺れは大型船でもしばしば見られ、その検討の一例を以下に示す。

Huらの研究は超大型コンテナ船の向波中のパラメトリック横揺れ現象について実験と数値計算で検討した。模型試験は曳航水槽で規則波と不規則波中で異なる前進速度で行われた。しかし、正面不規則波中では、横揺れの不安定性は確認できなかった。

実船計測手法は、船の設計検証、開発されたツールの検証に重要であり、商船や艦隊などで計測手法が提案されており、その一例を以下に示す。

CarreraとRizzoは、17.5mのFRPボートの波浪中での船体運動と船首部の衝撃的な構造荷重を計測した。MoerschとHermundstadは、21フィートの滑走艇の船底部のスラミング圧力の注目して計測を行った。

Fukunagaらの研究は、船の運動や船速を計測しながら出会い波の波高、波長、方向を予測する船載型のシステムを提案した。このシステムは、荒海域での運航支援などのために船載型の情報システムとして開発された。この手法は前後揺れを除き計測された5自由度の船体運動とストリップ法で計算された船体運動との比較から波浪情報を求める。船体運動は6つの加速度計で計測した結果を二回積分して求めた。ここでの対象は旅客用のフェリーに対して行われた。

Leguenらの研究は、フランス海軍の艦艇に搭載された構造モニタリングシステムを示した。システムは全体荷重、スラミングや振り荷重、船体運動、運転や航海パラメータをモニターするように設計された。このシステムの目的は荷重情報などの収集、補修手順の最適化、運行支援である。

Yooらの研究は、ブイの三次元運動から波の方向を推定する方法を示した。ブイに固定されたGPS受信機
３つの回転運動（船首揺れ、縦揺れ、横揺れ）の取得とブイの運動自体を正確に計算するために使われた。
ブイは波高の推定にも使われた。

参考文献
Investigate the Nonlinear Effects in Ship Motions”, 8th Intl. Conf. on Fast Sea Transportation, St. Petersburg, Russia, June.

第3章 試験法についての国内外の動向

3.2.5 Specialist Committee on Azimuthing Podded Propulsion

三井造船 竹腰善久

ポッドに関する試験は、ポッド単独試験と自航要素がある。ポッド推進方法には、プロペラをポッドの前方に装備するプリング型と後方に装備するプッシャー型がある。図3.2.5.1はポッド推進器を装備した実船スケールの船舶の馬力を推定するためのフローチャートを示す。また、プロペラ単独試験については、ITTC(2002b) 7.5-02-03-02.1 "Propeller open water tests" に基づいた方法で行う。

図3.2.5.1 実船馬力推定のフローチャート

(1) ポッド単独試験

ポッド単独試験は、プロペラとポッドハウジングがともに装備された状態で試験を行い、大きく4つの目的がある。
1. ポッド推進器の推進性能を計測する。
2. ストックプロペラで計測したデータから、最終的に設計するためのデータを計測する。
3. ポッド装置の流力設計を行うため。
4. プロペラ単独性能からポッドハウジングへの影響を調査する。

ポッド単独試験の試験状態は、通常型プロペラのものと同様に回転数は一定で行われるべきである。プロペラとポッドハウジングの相互作用を調査するために、プロペラ単独試験に近い回転数で試験を行う。レイノルズ影響を最小にするために、できるだけ高いレイノルズ数で実験を行う。

ITTC が推奨するポッド試験装置を図3.2.5.2に、代表的なセッティングをしたときの写真を図3.2.5.3に示す。水面影響を避けるために、プロペラシャフトは最低でも1.5Dp 沈めた状態(2Dp が好ましい)で試験をする。ここで、Dp はプロペラの直径である。
エンドプレート上方に装備されているシャフトハウジングは、シャフトが拮抗力を発生させるのを防ぐために、流線型をした形状で保護されなければならない。図 3.2.5.4 のように、エンドプレートは薄くかつシャフトハウジングの底に水平に設置しなくてはならない。このプレートは、ポッドストラットからの縦方向の流れを防ぐ役割を果たすために、シャフトハウジングよりも大きい形状をしていなければならない。

ポッドの上面は、自由表面波の影響を受けない範囲でできるだけ水面に近づけなければならない。

プロペラシャフトは自由表面に対し垂直にされなければならない。

もし、ポッドストラット上面に傾斜があるような場合は、図 3.2.5.5 のように楔を追加することによって、シャフトが水平になるように調整しなくてはならない。

ストラットの上方とエンドプレートの下部に生じる隙間（ストラットギャップ）できず小さくしな
第3章 試験法についての国内外の動向

くてはならない。この隙間は図3.2.5.6に示すようにポッドの抵抗に影響を及ぼす。

図3.2.5.6 ストラットギャップが変化したときのポッド抵抗

代表的なプロペラギャップは図3.2.5.7に示すようなものである。プロペラギャップはポッド自体のスラストへの影響は小さいが、プロペラ性能への影響は大きい。特に、プリング型のポッドで多く使われる円錐ボスにおいて、その影響は大きくなる。模型試験におけるギャップは、1・3mm程度を推奨する。

ポッド単独試験におけるレイノルズ数影響は、プロペラ翼によるものと、ポッドハウジングによるものの、2つがある。前者は、プロペラ単独試験とほぼ同じであると推定することができるので、後者についてのみ考える。レイノルズ数が5×10^5より大きければレイノルズ数影響は小さいと考えることができる。ストラット、ポッド、フィンにつけられた乱流促進を装置したものを図3.2.5.8に示す。

図3.2.5.7 プロペラギャップ
図3.2.5.8 ポッドハウジングの乱流促進

(2)自航試験

通常型のプロペラを使用する場合と同様であるが、自航試験はポッド装置のない状態で抵抗試験を行った後で行う。ただし、模型と実船の粘性抵抗係数の違いを修正するためのSFCとして、ポッドハウ
ジングの尺度影響を考慮する必要があり、そのためにプロペラの荷重度変更試験を行う。ポッドの上部と船体の隙間から空気吸い込みが発生しやすいので、注意が必要である。空気吸い込みはプロペラのベンチレーションを引き起こす危険のために、防がなくてはならない。広範囲にわたって層流領域にならないように、ポッド周りのレイノルズ数が十分高い必要がある。レイノルズ数が小さくなってしまう場合には、ポッドハウジングに乱流促進を装着する。自航試験として、プロペラだけを推進としてポッド推進器を付加物として考える場合と、ポッド推進器全体を推進器として考える場合がある。22回ITTC(1999)においては、後者を推奨している。自航試験においては、ポッドの位置や傾きの最適化もあわせて行われることが多い。このとき、プロペラと船体のクリアランスに注意をする必要がある。

3.2.6 Specialist Committee on Wake Fields

日本造船技術センター　佐藤和範

ITTC 伴流場特別委員会の第25回総会への報告及び勧告に関して、PIVによる流場計測に関わる部分を中心に抄訳し、意訳した。訳者の注釈はイタリック体とした。本節内の章番号等は、報告書全体と区別するため、下線で示した。

以下の略称を用いる。

PIV Particle Image Velocimetry
SPIV Stereo PIV
LDV Laser Doppler Velocimetry

1. 一般

1.1 委員、会合 (省略)

1.2 課題

24thITTC で本委員会に与えられた課題は次のとおりである。

・模型船および実船の伴流場の数値計算法の概観
・伴流の流速分布計測法の見直し
・模型船および実船の伴流の流速分布計測に関する標準手法の作製
・キャビテーション試験における伴流シミュレーションに関する既存指針の見直しと更新

2. まえがき

・委員会は近年注目を集めている実船伴流場の数値計算法に注目した。第3章
・伴流場計測の試験法 第4章
・5孔ピトー管およびLDVによる伴流場（プロペラ無）計測の標準手法を作成した。第5章
・キャビテーション試験における伴流シミュレーションに関する既存の標準手法を見直して更新した。
第 6 章
・実船伴流の流速分布計測法は日常化していないので標準手法は作成しない。PIV は速度場計測に広く使用されているが、プロペラ面の流速分布計測法として未だ一般化しておらず研究段階なので、標準手法を作成しないで PIV 使用法に関する指針のみ第 7 章に掲げる。

3. 模型船および実船の伴流場に対する数値計算法の概説

3.1 まえがき

CFD 検証のために欧州で組織された二つの事業の紹介

・EFFORT(European Full-scale Flow Research and Technology) project
実船 2 隻について LDV 計測、対応する模型試験ではピトー管と PIV

・Leading Edge
以下の 3.2 模型船の粘性流計算 3.3 公称伴流 3.4 有効伴流 3.5 舵と付加物 3.6 実船の粘性流計算は 2005 年の CFD WORKSHOP TOKYO 等の文献紹介である。

3.7 まとめ
伴流場に関する数値計算法は急速に進歩し、模型船と実船の複雑な船尾形状および舵、付加物等に有用である。伴流場の数値計算としては、ほとんどの研究者が RANS 方程式を解いている。乱流模型としては、主に、レイノルズ応力模型(Reynolds Stress Model)、$k-\varepsilon$、$k-\omega$ などの 2 方程式模型、およびこれらの組み合わせが使用されている。EFFORT 事業では伴流場の数値計算としてはレイノルズ応力模型が最も信頼できることが示された。

4. 伴流の速度分布計測法の概観

4.1 まえがき
以下、伴流場解析のために曳航水槽で使用される実験技術の概観を報告する。目的は計測技術の詳細な基本情報を紹介することではなく、曳航水槽における試験における適用可能性を検討することである。さらに、速度計測技術の将来の発展において重要な事柄について検討する。

以下、原文では本章の節項の構成に乱れがあるので適当に修正した。

船の伴流場計測に使用される方法は幾つかある。これらの方法に関する一つの一般的分類として、一点を計測するか、面で計測できるのか、体で計測できるのかに基づく分類がある。表はこれらの速度計測技術の比較表である。
<table>
<thead>
<tr>
<th></th>
<th>Measured components</th>
<th>Measurement location</th>
<th>Frequency resolution (up to)</th>
<th>Data amount per s(Mb)</th>
<th>Processing time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 holes Pitot tube</td>
<td>3</td>
<td>Single point</td>
<td>10-100Hz</td>
<td><0.01</td>
<td>Real time</td>
</tr>
<tr>
<td>LDV</td>
<td>3</td>
<td>Single point</td>
<td>5-10kHz</td>
<td>0.02</td>
<td>Real time</td>
</tr>
<tr>
<td>PIV</td>
<td>2</td>
<td>plane</td>
<td>30Hz</td>
<td>64</td>
<td>240</td>
</tr>
<tr>
<td>SPIV</td>
<td>3</td>
<td>plane</td>
<td>30Hz</td>
<td>128</td>
<td>520</td>
</tr>
<tr>
<td>Time Resolved PIV</td>
<td>2</td>
<td>plane</td>
<td>5-10kHz</td>
<td>4,000</td>
<td>7,500 ÷ 30,000</td>
</tr>
<tr>
<td>Time Resolved SPIV</td>
<td>3</td>
<td>plane</td>
<td>8,000</td>
<td>16,500 ÷ 66,000s</td>
<td></td>
</tr>
<tr>
<td>DDPIV</td>
<td>3</td>
<td>volume</td>
<td>30Hz</td>
<td>192</td>
<td>600s</td>
</tr>
<tr>
<td>Time Resolved DDPIV</td>
<td>3</td>
<td>volume</td>
<td>5-10kHz</td>
<td>12,000</td>
<td>20,000 ÷ 80,000 s</td>
</tr>
</tbody>
</table>

4.2 一点計測

ビトー管、LDV、熱線流速計は速度の3成分を計測できる典型的な点計測技術である。あまり使用されていないが乱流の研究に適している熱線流速計を除き、一点計測技術は、プロペラがない場合の伴流場計測のために曳航水槽で最もよく使用されている。

4.2.1 ビトー管

5孔ビトー管の長所の一つは速度の3成分を同時に計測する場合の費用対効果である。曳航水槽における実験では圧力変換機と移動機構が共通の道具となっている。解析法の基本は理想流体理論に基づいているので、この方法の採用はすっきりした選択である。

しかしながら、この方法には幾つかの欠点がある。ビトー管では、その計測原理からみて、速度は圧力計測を介して間接的に得られ、その変換は非線形である。さらに、非定常流場計測に拡張することは困難である。検出器によって流場が乱されるのが普通である。このような問題点にも関わらず、ビトー管は曳航水槽や風洞で一般的に使用されているので、定常流場計測には妥当な方法となっている。

この後、Pienの1次元法や藤田、Olivieriの2次元法の説明がある。

4.2.2 レーザーLDV

光の散乱に基づく様々な技術の中で、LDVは最もよく使用され十分確立された方法である。LDVは一点の速度3成分の時間変動を計測することができる。移動機構によってこの計測点を移動させて流場全体を計測する。数多くの1点計測法の中で、LDVは複雑な流速流れを測定するのに適している唯一の方法である。

LDVは、複雑な速度場の平均速度と速度変動に関する情報を提供するものとして、世界中の多くの研究機関で日常的に使用されている。LDVによる計測は、プロペラ周りの複雑な3次元流れを解析することによって、CFDの妥当性検証のための価値あるデータを提供することから、技術における転換を担っていることが明らかになっている。

LDVの重大問題は1点計測ということで、その技術的な問題点を次に示す。
第3章 試験法についての国内外の動向

・LDVにおいては、複雑で剥離したような流れの大规模渦構造の空間特性を得るのが難しい。
・Euler法や時間平均手法では、非定常渦構造の強さの推定に重大な誤りが引き起こす。
・十分な空間の速度場全体を得るには施設の長時間稼働が必要で、試験費用の増大となる。

増大する試験費用に関して言うと、LDVを使用することの効用は装置の型式に依存する。データ取得が連続的でできない装置ではLDVの効用は減少する。たとえば、曳航水槽におけるデータ取得時間は1航走の時間によって制限される。航走と航走の間には波が静まるための時間を十分とる必要がある。この問題についての対策としては、1航走中の計測点数を多くするため、どのような順序で点を移動させたらよいかを考えることである。

近年LDVに関する文献はプロペラやWaterjetの伴流やプロペラ・船体干涉に関するものが多い。
この後、プロペラ周り、付加物周り、プロペラ・船体干涉、プロペラ・舵干渉、WaterjetポンプのLDV計測に関する文献紹介がある。

4.3 面計測（PIV, SPIV, Underwater PIV）
この10年間におけるレーザー、高速digitalカメラ、計算機の力強い発展が可視化技術による速度場計測法に決定的進歩をもたらした。PIVはその1例である。流れに入れて投入された極小粒子群にsheet状のレーザー光を照射し、高分解能カメラによって短時間間隔で2枚の映像を撮影する。個々の粒子の位置を二つの映像で読み取り、その違いから局所的速度ベクトルを得る。

LDVに比べてPIVは多くの点で優れている。

・PIVは十分な大きさの平面領域を捉える計測なので、流れの空間的構造の研究を可能にする。
・記録時間は非常に短く、データ収録、制御部分の技術特性に依存する。計測結果の解析は後処理である。
・PIVは高費用の施設を使用する場合には特に有利である。PIV操作はあまり技術的熟練を要しない。

SPIVは平面PIVに関する最近の革新であり、2台のカメラによる異なる2方向からの流場映像により、ある一つの面上の3速度成分計測が可能となる。
この後、1997年の船舶流体力学分野におけるPIVの使用例をはじめるとする9編（ほとんどがプロペラ回りの流れ）の文献紹介がある。
PIV Measurements

 - PIV in a cavitation tunnel
 - Propeller wake w/ load variation

- Paik et al. (2007)
 - Similar study
 - Focused on the analysis of tip vortex trajectory

Underwater SPIV

- INSEAN developed the first underwater Stereo-PIV system for towing tank applications. The system has a high energy laser, four megapixel cameras and is suitable for the measurement of the three velocity components, Felli et al. (2003) and Di Felice and Pereira (2007)

- Underwater probes for towing tank applications are growing steadily. Within the European Hydro-Testing Alliance, a cooperative effort and joint research venture has begun for the development of standards on PIV methods in towing tanks. Due to the wide range of possible applications and difficulties related to hardware and calibration methods, these standards are still in the early development stage.
曳航水槽における水中流速計は少しずつ進歩してきている。欧州のHydro-Testing Allianceでは曳航水槽におけるPIVの標準的使用法を発展させるべく協働や共同研究が始められた。広範囲な適用可能性とhardwareや較正法に関する諸困難のためこれら標準的手法は未だ発達の初期段階である。

4.4 体計測（tomography, DDPIV）

益々複雑になる適用分野からの要請のため、新しい技術的挑戦は、hardwareとsoftwareの両方に対してよりいっそうの進歩を期待付ける。ここ数年の動向を見ると、完全な3次元流場の把握に着実に動いている。この動向は、実際に未だ有効とはなっていない先端技術の発展を動機付けている。にも関わらず、標準的なSPIVによって得られる面上の速度3成分は流れ全体の一部分に過ぎないので、流れの3次元的把握は船やプロペラ伴流における共通の要求になってきている。

PIV関係者における最近の努力は、PIVの考えの完全な3次元空間への拡張に関するものである。次のように数多くの方法が研究されている。

- Multilayer PIV
- Scanning PIV
- Multiplane PIV
- Holographic PIV HPIV

HPIVは、その大きな潜在力が賞賛されてきたが、光学系の微妙な配置が必要で外乱に弱く、研究室以外では使いにくい。

Particle Tracking Velocimetry PTV

Lagrange流の表現への真の3次元的方法である。PTVは伝統的な流れ可視化技術から発展してきた方法で、気泡やtracersのような個々の粒子の軌跡を三角測量によって決める方法である。粒子の軌跡を求めるには二つの制限がある。粒子の密度が高いと軌跡追跡が正しく出来ないこ
と、および、粒子の移動量や軌跡の長さを粒子間平均距離より小さくする必要があることである。よって、PTV が PIV の欠点に打ち勝とうとするなら空間分解能を犠牲にせざるを得ないだろう。

Tomographic PIV

これは MART 演算法によって 3 次元空間の粒子を再構築する方法である。これは多くの位置からの映像が必要なので小規模な実験室での使用に限られる。

Defocusing Digital PIV DDPIV

Volumetric measurements (DDPIV)

- Pereira et al. (2006)
 - Two-phase flow field around a propeller

これは 3 次元流場への新しい試みであり、PIV 技術の 3 次元への自然な拡張である。DDPIV は比較的大きな(1 立方 foot 程度の大きさ)領域用に設計されており、一体型の光学装置という考えに基づいている。

DDPIV では、PTV や SPIV とは異なり、一つの特定の光軸を持っており、粒子像の stereoscopic matching よりもむしろ pattern matching に基づいている。もう一つの基本的相違は、粒子移動の統計的評価法にある。

この技術は主に 2 相流に適用されてきており、流速と存在密度やボイド率のような気相の大きさ特性を得ることを最終目標としている。DDPIV は最近プロペラ周りの 120mm×120mm×120mm の領域の 2 相流に適用された。

4.5 実船計測

模型船や実船の伴流中流速分布計測には幾つかの方法が使用されてきた。しかしながら、これらの計測は、日常的にはプロペラ設計や CFD の検証のため、プロペラが無い状態で実行されており、実船の伴流中流速分布計測は比較的まれである。このため、実船計測は進んでいない。

LDV やビトー管を使用した実船計測の文献紹介

- 63 -
第3章 試験法についての国内外の動向

LDV
1991年 谷林ら 青雲丸
1985年 Kux et al. Sydney Express
2004年 Kuiper et al. patrol boat
1984年 Norris
ビトー管
1971年 高橋ら
1994年 萩原
1981年 DTNSRDC
1981年 Chai et al

5. 模型船の伴流場の流速分布計測に関する手法の作成

5.1 まえがき
5孔管による流場計測は、曳航水槽における模型試験としては歴史が長く、ほとんどの水槽で行われており各水槽では独自の手順書を有しているので、ITTCにはこれに関する標準的手法作成が要求されてこなかった。しかし、計測精度は解析法に依存しており、較正法や検出部の選択についての標準手法は有益である。

続いて下記の二つの節で標準的手法の概要が示されている。

5.2 5孔管による標準的計測法
7.5-02-03-02.4 Nominal Wake Measurement by a 5-Hole Pitot Tube

5.3 レーザーによる標準的計測法
7.5-02-03-02.3 Nominal Wake Measurements by LDV
Model Scale Experiments

6. キャビテーション試験における伴流シミュレーションに関する
既存指針の見直しと更新

ITTCの標準的手法を調べたところ、キャビテーション試験における伴流シミュレーションに関して、次の四つの手法のあることが分かった。

・7.5-02-03-03.1 Model-Scale Cavitation Test Cavitation Induced Pressure
・7.5-02-03-03.3 Fluctuations Model Scale Experiments
・7.5-02-03-03.5 Cavitation Induced Erosion on Propellers, Rudders and Appendages
 Model Scale Experiment
・7.5-02-03-03.6 Podded Propulsors Model-Scale Cavitation Test

-64-
本委員会でのこれらの手法の見直しとは、キャビテーション試験時の伴流場の正確なシミュレーションを確かなものとすること、および伴流場の作製法、評価法に関する手法の標準化である。その主な修正は次のとおりで、上記の4編の修正をAdvisory Committeeに提出した。

・ダミー模型を使用するときは伴流場を計測し実船のそれと比較すべきである。
・伴流場計測に際しては、今回新たに作製した標準手法（ピトー管およびLDV）によるべきである。

7. 伴流の速度分布計測におけるPIV使用への指針

7.1 指針

続く諸節では、PIVを使用する試験、特に曳航水槽における試験の計画に役立つように、PIVの装置に関して指針と実際的情報を与える。

7.2 レーザー

PIV技術での粒子の照明には、高出力のパルスレーザーが必要である。繰り返し速度が30Hzまで可能な532nmで800μmまでの高透明度のパルス出力が得られるNd:Yagレーザーが市販されている。水中でPIVを使用する場合、light sheet厚さが1mmで10μmの中空ガラスを使用する場合、0.0005〜0.001mJ/mm²のエネルギー密度が必要である。通常、曳航水槽の試験では計測領域は100mm×100mm〜500mm×500mmだから100〜200mJのレーザーで十分である。この程度の小さなレーザーは、大きさ、重量、所要電力からみても、曳航台車上での取り扱いが簡単である。

レーザー選択に際しては繰り返し速度が重要である。幾つかのレーザーでは繰り返し速度を変えられないか、狭い範囲でしか変えられない。このような場合は、PIV装置の最高速度を確保するためには、レーザーの繰り返し速度はカメラの画像速度ないしその整数倍にぴったり合わせる必要がある。

7.3 カメラ

分解能が1〜12 Million pixelの広範囲なPIVカメラが市販されている。PC busの速度が遅くなるので、通常、高解像度カメラは画像速度が遅い。曳航水槽における試験は1航走の時間が限られているので、これは重要な検討項目となる。分解能と画像速度の妥協が必要である。一つの指針としては、カメラの最適な分解能は5〜10 pixels/mm²である。（訳者メモ；100mm×100mmで0.05〜0.2 Million pixel，500mm×500mmで1.25〜5 Million pixel）

7.4 粒子供給

PIV計測では様々な型の粒子が使用される。PIVによる水中計測では粒子供給はそれほど多きな問題ではない。水中への粒子供給では、速度追従の遅れが発生しないようにするために、ほとんどの場合、比重が1.0に近い粒子が使用される。直径100μm以下の大きな粒子を使うことによってこれの可能となる。曳航水槽では大量の粒子が必要とされる。費用対効果を考えると、幾つかの大きさのものが商業的に供給されており入手が容易な中空ガラスが良い。
粒子の大きさはレーザーの出力を考慮して決める。通常、感度の低いカメラでは、10μmの中空ガラスで0.001mJ/mm²のレーザー出力が必要である。出力が低い場合には、より大きな粒子が銀メッキした中空ガラスのような高反射率の粒子を使う必要がある。

粒子は、計測領域の流れを乱さないようにするため、十分上流から熊手状のものから供給する。このような問題を避けるため、曳航水槽では、熊手を計測領域の下流側に設置して帰投時に粒子を供給する。

7.5 SPIVの設置

船の周りの流れは3次元性が強いので、明らかにSPIVが必要である。SPIVの精度や様々な光学系の長所短所に関しては多くの文献がある。前方散乱でlight sheetの両面に対して対称となるようにカメラを配置することが、精度上からは最も良い。しかし、模型船の伴流場の事情からこれは実際的ではない。よって、二つのカメラはlight sheetの同じ側に設置するが、この場合、ステレオ再構築時の精度を確保するため、二つのカメラアングルは20度以上にするよう配慮すべきである。

7.5.1水中SPIV

曳航水槽では水中カメラと水中のlight sheetが必要である。水中SPIV検出器は曳航水槽用として進歩してきた。このようなシステムの選択においては、曳航水槽の様々な用途に適用できるよう、SPIVの光学系の柔軟性と変更容易性が先ず重要であろう。

7.5.2SPIVの較正

SPIVシステムで良質な結果を得るためには、PIVシステムの較正は決定的に重要である。角度設定とSolo法が広く使われている。較正は、簡単には市販されている3次元の較正用標的で出来る。しかし、幾つかの面上に2次元の較正用標的を置き換えることにより正確な較正ができる。再構築の精度には、較正中に標的とlight sheetの位置関係を変えないことが重要である。ほとんどの市販SPIVsoftwareでは、標的とlight sheetとの配置誤差を評価し修正する機能が備わっている。light sheetと標的のなす角度の誤差が1度程度で小さい場合は、通常、この修正はうまくいく。設置誤差がこれ以上の場合は再較正した方がよいため、問題終了後に曳航水槽で簡単に得られる一様流を計測する等の較正検査を勧める。ちゃんと較正すると、95%以上の計測領域で2%以内の誤差で計測できる。通常、計測領域の端の部分で誤差が大きい。

7.6PIVの時間間隔

レーザーパルスの時間間隔は計測の品質からみて最も重要である。一つのpixelより小さい内挿の割合を出来るだけ少なくするため、粒子の移動量が少なくとも5pixel程度になるようにパルスの時間間隔を決めなくてなりません。主流がlight sheetに垂直な場合の二次流れ計測では、粒子がlight sheetを通じてしまって相関ピークが落ちてしまうようにするため、時間間隔はlight sheetの厚みによって制限される。このような場合はlight sheetの厚みを厚くする必要がある。

7.7データ処理

PIVで最初に得られる生データは画像である。4Mpx、12bit/pxのSPIV同時計測ではデータ量は32MBになる。普通、データの保存、復帰、解析は時間のかかる作業である。経験的には、現在利用可能
能な3GHzのmulticore-multiprocessor PCと現在利用可能なPIV算術によるものとして、曳航水槽における1日分のデータ解析には少なくとも5日必要である。

この20年間画像処理算法の改良に多くの努力が払われてきた。windows deformations算法が粒子移動量計算の精度が高いが、精度向上はデータ処理時間の増大によって得られている。通常、多くの計測領域の同じ時刻における平均流速を得たい場合は、精度は悪くても速い算法の方が良い。

7.8 光の反射

模型船表面からの反射光や背景中の明るい物体は計測精度に影響する。この影響を取り除く画像処理算法は存在しない。この問題を避ける唯一の方法はPIVカメラの視野中の全ての物体を黒くすることである。

粒子を供給する領域が狭くて済む小規模な計測では、蛍光粒子（入射光とは異なる周波数の光を発する）を使用することが可能である。カメラに偏光濾波器を付けることによって粒子画像と反射光を分離することが出来る。

8. 会議への勧告

本特別委員会は4篇の既存の標準手法の改訂と2編の新しい標準手法の受託を勧告する。さらに、次のことを勧告する。

・より標準的な計測法としてPIVの進歩を監視、調査すること
・実船伴流場の計算による予測の有効性について検分、監視すること

これらの二つは今後さらに一般的なものとなるよう。

9章として71篇の参考文献の目録がある。文献調査の結果として、10章に伴流場計算法に関わる22編の文献目録、試験法に関わる3篇の分権目録がある。
3.2.7 Specialist Committee on Cavitation
三菱重工業 川北千春

キャビテーションのモデル化に重要な実験技術として、非接触式の流場計測手法である Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV), 及び写真・ビデオ計測について、また、非定常圧力計測、気泡核計測及びキャビテーションエロージョン計測の最新技術を紹介する。

(1) Laser Doppler Velocimetry (LDV)
LDV は、流場中のある 1 点における平均流速や、乱れの統計値を精度良く計測する非接触式の計測手法として確立している。しかし、データ解析に多大な時間が必要であり、非定常な空間構造や乱流構造の計測は困難である。

Fry ら(2007)は、スキャニング技術を利用することにより、データ解析の効率化と空間分解能の向上を行った。スキャニング技術は、連続的にプローブを動かしながら計測を行い、同時にデータ解析も実施する。

(2) Particle image Velocimetry (PIV)
PIV は、瞬間的な面計測を実施する。3 次元計測を行う手法としては、ステレオ PIV (Stereo PIV；SPIV), デフォーカス PIV (defocused PIV；DPIV), ホログラフィック PIV (holographic PIV；HPIV)が 2 次元 PIVから拡張された。

Longo ら(2004)は、プロペラ後流やプロペラと船体の干渉流れの研究に PIV を用い、平均流や時間・空間的に変化する流れの構造を効率的に計測できることを示した。CCD カメラの解像度向上と早いフレーム率は高空間分解能のデータ取得を可能とし、データ処理技術の向上は PIV で計測したデータの精度をより向上させる。

Felli ら(2006)は、プロペラ周りの非定常圧力の調査に PIV とハイドロフォンを用いた計測を行い、プロペラ後流中の流場と圧力の相関を示した。図 3.2.7.1 に計測例を示す。実験はキャビテーションが発生していない状態で行われているが、プロペラによる圧力変動計測にも適用できる注目すべき技術である。

Foeth と van Terwisaga(2006)は、水中翼面上で変動するシートキャビテーション周りの流場を計測
した。Calcagnoら(2005)は、自由表面付き回流水槽にて模型船後で作動するプロペラ後流渦や翼面上の境界層や伴流をSPIVにより計測した。プロペラ画像は、データ処理速度改善のために、SPIV画像のアンサンブル平均から引かれた。カメラの角度が対象でない2台のカメラの設置位置が独特です。1台のカメラは回流水槽の外に、もう1台のカメラは回流水槽内の水中に設置している。

(3) 写真・ビデオ計測

CarltonとFitzsimmons(2006)によって議論されるように、ボロスコープ(Boroscope)は、実船のキャビテーション観察で評判になっている。近年では、1,500フレーム/秒のフレーム率で画像を取得できる。高フレーム率は、翼面上のキャビテーションパターンの観察だけでなく、伴流中で作動する翼とキャビテーションの複雑な相互関係の計測も可能とする。図3.2.7.2に船内に取り付けられたボロスコープカメラを示す。OweisとCeccio(2005)は、キャビテーション初生が一つの渦内で発生する前に、渦の相互干涉が初生を起こすことを示した。このことから、キャビテーションの相互干涉の観察は、キャビテーション初生と尺度影響の研究にとってますます重要となる。操船運動中のキャビテーション現象の理解にも高フレーム率のボロスコープカメラの使用が試みられている。

プロペラ翼面上に発生するキャビテーションの発生範囲を計測する目的で撮影した画像は、カメラ角度の関係で斜視画像となる。Pereiraら(2004)は、プロペラの斜視画像を平面画像に変化するためにワービング変換(warpingtransformation)を用いた。キャビテーション水槽の外側から撮影した斜視画像をプロペラ翼面上の座標に変換する。図3.2.7.3にワービング変換の説明図を示す。将来的にはキャビテーション体積の計測に取り組む。

(4) 非定常圧力計測

に良い相関関係があることを示した。

(5) 気泡核計測
レーザを用いたデフォーカス(defocus)技術は、気泡や小滴サイズの計測に用いられる。球面散乱からの反射光の間の干涉パターンは、レンズの後ろの焦点のずれた平面内に表れる。干渉縦の間隔と焦点合った画像と合っていない画像面の距離の解析から気泡サイズを決定する。Damaschke ら(2006)は、図3.2.7.4に示すように2つの干涉光シートを使った計測を行った。これらの技術は、まだ開発中であるが、標準的な位相ドップラーフロー計(phase Doppler anemometer: PDA)の利点を提供する。図3.2.7.5にデフォーカス画像とフォーカス画像の例を示す。

Palero ら(2005)は気泡サイズ計測のために、焦点のずれた面内の干涉パターンを用いたホログラフィックPIV(HPIV)を用いた。

近年、気泡核計測に音響技術が適用されている。Chahine と Kalumuck(2003)は、気泡サイズと個数を求めるために、パルス信号を用いた逆散乱アルゴリズムを開発した。

(6) キャビテーションエロージョン計測
エロージョン計測にはいろいろな技術が使用されている。ピット数計測法は表面エロージョンを評価して、耐エロージョンのための異なる材料にランクを付けるか、同一材料のキャビテーション強さにランクを付ける事に用いられる。光学的にピットの輪郭を描くことは、この方法を材料の紛失体積を評価する方法に拡張された。Patella ら(2000)は、エロージョンピットの表面輪郭マップの作成にレーザを用いた。Bachert ら(2005)は新しい白色干涉光を用いた技術で、浸食された範囲の深さ方向の輪郭を計測して求めた紛失体積が、直接計測した紛失体積とよく一致することを示した。Escaler ら(2007)は、非定常クラウド及びシートキャビテーションにおいて、衝撃圧とピット率には良い相関関係があることを示した。

3.2.8 Specialist Committee on Stability in Waves

水産工学研究所 松田秋彦

本委員会は大阪大学の梅田直哉准教授を委員長とした9名の委員で構成されている。本委員会からは大きく分けて、非損傷時復原性問題、損傷時復原性問題、復原性評価の3つについて報告があった。

1) 非損傷時復原性問題
 (1) 風波中の転覆模型実験技術
 転覆模型実験としては自由航走模型実験とガイドを用いた実験を紹介するとともに、規則波、長波頂不規則波、短波頂不規則波および停船時の風による影響を考慮した実験手法について紹介している。
 (2) 向波中パラメトリック横揺れ
 叱引台車等を用いて曳航する実験方法および自由航走模型実験について紹介するとともに、不規則波中における向波中パラメット横揺れの非エルゴード性に関する検討および向波中パラメトリック横揺れの非線形特徴について紹介している。
 (3) 模型実験法
 模型実験法に関しては、モデルスケールに関するもの、過渡水波、風力のモデル化等々について紹介している。
 (4) パラメトリック横揺れのベンチマークテスト計画
 3隻のコンテナ船を用いた実験結果から得られたベンチマークテストのための基礎データについて紹介するとともに、ベンチマークテストの手法について紹介している。

2) 損傷時復原性問題
 (1) 数値シミュレーションのモデル化手法
 シミュレーション計算を行うための基本的条件について紹介するとともに船内に浸水した海水の挙動に関するモデリングなどを紹介している。
 (2) 最近の論文
 浸水課程に関して7編の論文、損傷船舶に関する数値計算に関して8編の論文を紹介している。
 (3) 数値シミュレーションのベンチマークテスト
 ギリシア、英国、オランダ、ポルトガルの4つの機関が参加したベンチマークテストについて紹介をしている。
 (4) 浸水シミュレーションのベンチマークテスト
 バージ船型を用いた実験と計算を比較するベンチマークテスト（フェーズ1）と、複雑な内部構造を持つ客船を用いたベンチマークテスト（フェーズ2）の二つについて洋裁に結果を紹介している。
第3章 試験法についての国内外の動向

3) 復原性評価

（1）艦艇の手法
現在の海軍復原性規則および、海軍の復原性規則の発展について解説を行っている。

（2）商船の手法
IMOの非損傷時復原性規則の改正、実験的手法を用いたウェザークライテリオン、非損傷時復原性の一部の強制化、操船ガイドライン、性能要件基準等について解説を行っている。

以上のように、本委員会の成果は盛りだくさんであるが、中でも、安全規則との関係で重要度が増すと考えられる船舶復原性模型実験手法の標準化への貢献は特筆すべき成果の一つであると考えられる。
4 試験法についてのアンケート

大阪大学 眞田有吾
海技研 児玉良明

4.1 はじめに

AEFD 戦略研究委員会では、各試験水槽を対象に試験法に関するアンケート調査を実施した。実施した項目は以下の 4 つである。

1. 保有実験施設について
2. 表 4.1 に示す試験法についての問題点、重要性について
3. 試験設備等の課題
4. 委員会の今後の運営

ここでは項目 2 についての調査結果について述べる。項目 2 では、各試験法について問題の重要性を数値化する為、表 4.2 に示す 3 つの選択肢から選んでもらい点数化した。
<table>
<thead>
<tr>
<th>模型/実船</th>
<th>試験の種類</th>
<th>分類</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>模型試験</td>
<td>抵抗/自航試験</td>
<td>力</td>
<td>曳航力</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>舵力</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>プロペラ推力・トルク</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流場(流速)</td>
<td>対水速度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>伴流分布</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可視化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>压力</td>
<td>船体表面圧力</td>
</tr>
<tr>
<td></td>
<td></td>
<td>波</td>
<td>船側波形</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>波高分布</td>
</tr>
<tr>
<td></td>
<td></td>
<td>その他</td>
<td>姿勢</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>付加物</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>省エネ装置</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POT pod</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>流場計測</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高速船</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>運動計測</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>力、圧力</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>波高</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>荷重</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>傾斜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>伴流分布</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>摩擦</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>甲板打ち込み水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>キャビパターン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>模型プロペラ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高速度カメラ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>流場(流速)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高速船</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>運動計測</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>力、圧力</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>波高</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>甲板打ち込み水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>キャビパターン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>模型プロペラ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高速度カメラ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>伴流分布</td>
<td></td>
</tr>
</tbody>
</table>

波浪中試験			
		波高	
		船体運動/加速度	
		抵抗増加	
		斜波中試験	
		造波機	
		船体表面圧力	
		波高	
		荷重	
		傾斜	
		伴流分布	
		摩擦	
		伴流分布	

操縦性能試験			
		モータ	
		流場計測	
		高速船	
		運動計測	
		力、圧力	
		波高	
		伴流分布	

自由航走模型試験			
		尺度影響の解消	
		高速船	
		運動計測	
		動力源	
		操縦	
		高速船	
		運動計測	
		力、圧力	
		波高	
		伴流分布	

拘束模型試験			
		高速船	
		運動計測	
		力、圧力	
		波高	
		伴流分布	

耐航性能試験			
		運動計測	
		力、圧力	
		波高	
		伴流分布	

キャビテーション試験			
		キャビパターン	
		模型プロペラ	
		高速度カメラ	
		伴流分布	

実船試験			
		位置計測	
		波高	
		運動	
		荷重	
		力、圧力	
		摩擦	
		伴流分布	
表 4.2 項目 2 の選択肢と点数

<table>
<thead>
<tr>
<th>選択肢</th>
<th>点数</th>
</tr>
</thead>
<tbody>
<tr>
<td>特に問題なし</td>
<td>0</td>
</tr>
<tr>
<td>多少問題あり</td>
<td>1</td>
</tr>
<tr>
<td>問題あり</td>
<td>2</td>
</tr>
<tr>
<td>未回答</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2 調査結果

点数化後の結果を表 4.3 に示す。これは、点数が 5 以上のものから最高点となった 11 点のものまでを点数順に並べたものである。

表 4.3 項目 2 の調査結果

<table>
<thead>
<tr>
<th>点数</th>
<th>模型/実船</th>
<th>試験の種類</th>
<th>分類</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>実船試験</td>
<td>推進性能、操縦性能、耐航性能</td>
<td>波高</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>実船試験</td>
<td>推進性能、操縦性能、耐航性能</td>
<td>伴流分布</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>模型試験</td>
<td>POT</td>
<td>流場(流速)</td>
<td>抵抗増加</td>
</tr>
<tr>
<td></td>
<td>実船試験</td>
<td>抵抗/自航試験</td>
<td>流場(流速)</td>
<td>力、圧力</td>
</tr>
<tr>
<td>8</td>
<td>模型試験</td>
<td>波浪中試験</td>
<td>流場(流速)</td>
<td>伴流分布</td>
</tr>
<tr>
<td></td>
<td>実船試験</td>
<td>抵抗性能、操縦性能、耐航性能</td>
<td>尺度影響の解消</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>模型試験</td>
<td>抵抗/自航試験</td>
<td>流場(流速)</td>
<td>伴流分布</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>自由航走模型試験</td>
<td>尺度影響の解消</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>模型試験</td>
<td>抵抗/自航試験</td>
<td>流場(流速)</td>
<td>可視化</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>抵抗/自航試験</td>
<td>流場(流速)</td>
<td>可視化</td>
</tr>
<tr>
<td>5</td>
<td>模型試験</td>
<td>抵抗/自航試験</td>
<td>流場(流速)</td>
<td>可視化</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>波浪中試験</td>
<td>斜波中試験</td>
<td>運動計測</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>自由航走模型試験</td>
<td>近壁速圧</td>
<td>運動計測</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>拘束模型試験</td>
<td>高速船</td>
<td>運動計測</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>浪上模型試験</td>
<td>高速船</td>
<td>運動計測</td>
</tr>
<tr>
<td></td>
<td>模型試験</td>
<td>拘束模型試験</td>
<td>高速船</td>
<td>運動計測</td>
</tr>
<tr>
<td></td>
<td>実船試験</td>
<td>推進性能、操縦性能、耐航性能</td>
<td>波高</td>
<td></td>
</tr>
</tbody>
</table>

- 77 -
この結果をみると、8 点以上の上位 5 つは下記の通りである。
1) 実船波高分布
2) 実船伴流分布
3) 模型 Pod POT
4) 模型波浪中抵抗増加
5) 実船の力、圧力

このリストの最大の特徴は実船計測関係が多数を占めていることである。これは、模型船レベルでは計測法にかなりの進展があるにも拘わらず実船レベルでは進展が停滞していることを反映している。

実船流場の正確な推定手法の開発は船舶流体力学研究の最終目標であり、その中でも特に、船体抵抗及びプロペラ流入流場に直接関係する実船伴流分布の計測が重要である。今の計算機能力と CFD ソフトを用いれば実船レイノルズ数における流場計算が可能であるにも拘わらず研究に進展が見られないのは、計算結果を評価するための詳細な実船計測データが殆ど無いためである。

第 3.2.6 節 Specialist Committee on Wake Fields
に示されるように、模型船については LDV・PIV など計測法に大きな進展が見られるにも拘わらず、実船については進展が停滞している。実船伴流分布計測への LDV・PIV の適用については、第 5.2 節にやや詳しく議論されている。

実船の力は馬力、スラストであり、その計測は、既に多数の計測実績があるが、より安定且つ容易な計測システムが望まれている。

またもうひとつの特徴は、波高分布・波浪中抵抗増加など、実海域性能関係の計測が多いことである。これは、省エネルギー志向の高まりを反映して、実海域性能に注目が集まっていることの現れである。

波浪中抵抗増加は、船舶の実海域性能を左右する量であり、省エネルギーの必要性が高まっている昨今、計測のニーズも高まっているが、計測量が小さいことに起因する計測精度の問題、短波長域で難しいな波を生成することの困難さ、曳航水槽では斜め方向の波の実験ができないこと、日常的に簡便に実施できる計測法が確立されていないことなど、解決すべき課題も多い。

実船波高分布の計測は、実船の波浪中抵抗増加を推定するための入力データであり、実海域性能評価のために重要である。波高と波向きの両方、また、船体表面近傍と船体からある程度離れた範囲の両方について計測が必要であり、いくつかの手法が実用化されているが、さらに改良が必要である。

Pod は新しい推進システムであり、模型試験を実施するにあたり、流体力学的メカニズムの解明から始める必要があり、未だ十分に確立されておらず、第 2 章に示した HTA プロジェクトにおいても取り上げられている。一方、本文の 3.2.5 節に示すように、第 25 期 ITTC の Specialist Committee on Azimuthing Podded Propulsion においてかなりの進展があり、その仕事は第 26 期 ITTC の Propulsion Committee に引き継がれている。
5 必要性の高い試験の現状と今後の方策

5.1 総論

前章に示した本委員会でのアンケート結果では、実船計測関係(特に実船伴流分布計測)と実海域関係の計測(実船波高分布、模型波浪中抵抗増加)が、ニーズが高く、計測技術の発展が望まれる項目として挙げられた。

実海域関係の計測については、国内で大小の実海域のプロジェクトが走っており、それらの中でそれなりの進展が得られると期待される。

実船計測関係(特に実船伴流分布計測)については、我が国は他の先進国に遅れをとっている。模型船伴流分布計測については、昨今の光学機器・電子機器の発達により、EUのHTAプロジェクトや米国において、基礎研究のレベルはほぼ終わり、水槽での実用化の段階にあり、高額の研究費が投入されている。これに対して我が国では、阪大など研究レベルが高く米国が協力を仰いでいるが、国内の研究投資が無く、実用化について遅れをとっている。

実船伴流分布計測については、次節に述べられているように、最新の光学的手法を大規模流場に適用するためには様々な問題点があり、多額の実船実験費用を投入し、従来の技術を用いて行わざるを得ない現状である。最近の実船計測例としては、EUのEFFORTプロジェクト*(2004-2006)がある。しかし、CFDによる実船流場推定が既に可能であり、検証のための実船データが不足しているために研究の進展が停滞していることを考えると、実船伴流分布計測の必要性は高い。ただし、船底に大きな穴を開け、多額の費用を投入する従来法ではない、新しい簡便な方法を検討すべきである。

* EFFORTプロジェクト http://www.marin.nl/web/JIPs-Networks/Public/Effort.htm
5.2 実船伴流分布

実船の伴流分布計測については、計測の目的ならびに意義、計測手法の選択、そして計測の技術的課題が問題となる。計測の動向については、事例が少なく、試験的な計測に限られているため、ここでは将来の実用的な計測の可能性の展望について述べることとする。

実船伴流分布計測の目的と意義について

冒頭で述べたとおり、現状では実船伴流分布の計測は試験的にいくつかの試みがなされ、水槽実験との比較などが行われているが、系統的に実船実験が行われたり、これを基に実船の船型改良に具体的に反映されたなどの報告は見当たらない。これは、実船実験の困難さや膨大な費用の負担が一因であることは容易に想像がつくが、それでもなお積極的に技術開発が進まないのは、そのようにして得られる少ないデータを基に、どのように船型開発などに展開するかという展望が見出だせないことも大きいと考えられる。

実船伴流分布計測手法の選択

現状では、水槽実験で行われている伴流分布計測手法を基に、実船計測の可能性を考えざるを得ない。水槽実験における伴流分布の計測法としては、①ピトー管、②熱線・熱膜流速計、③レーザードップラー流速計、④PIV が一般的に考えられる選択肢である。実船計測を考える場合でも、これらの特性と適合性の検討からはじめる必要がある。以下に、検討の概略を述べる。

ピトー管

5 孔ピトー管を含む圧力計測を基礎とする流速測定法であるが、現在でも水槽実験において広く用いられている。点計測であり、ピトー管挿入かつトラバースする必要があることや、乱流計測計測などを目的とする場合には、応答周波数に問題があることなどが難点として挙げられるが、一旦計測装置をセットしてしまうと、定常流の場合には安定して計測が行える。かつて、実船計測に用いられ、成績を挙げた例もあるが、伴流分布を得るまでの長時間の計測と計測装置の設置の手間がかかるため、頻繁に行うまでには至らなかった。

熱線／熱膜流速計

熱線や熱膜を用いる流速測定法は、ピトー管に比べて応答周波数が高く、乱流などの計測には有効である。計測システムとしては、基本的にはピトー管と同じ点計測であり、センサーを流場に挿入しなければならない手間も同じである。前述のような乱流計測などの特定の目的以外には、安定したピトー管での計測との差別化は難しく、特に外的要因の多い実船計測への応用を考える上では、障害が多く、計測方の選択肢にはいることは希であると考えられる。
レーザードップラーフlow速計（LDV）
非接触で流速計測を行える点では、前述の2つの計測法とは一線を画す。プロペラ周囲での流場計測では、その有用性は広く認められるところである。実船計測においても、前述の2手法と同じ点計測であっても、センサーの挿入やトラバース装置の必要がないことなどで、有用視され、いくつかの試みもなされてきた。現在も、その可能性は有効であろうと考えられるが、伴流分布を得るまでの長時間の計測の必要性は変わらず、継続的に実験を実施するには負担が大きすぎるというのが多くの理解であろう。

PIV
PIV は、画像を用いて面または3次元空間の瞬時の流速分布を求める方法として注目を集め、広く応用が広がっている。近年、水槽実験でも水密容器にレーザー、カメラなどの計測システムを収め、模型船まわりの流速分布を系統的に計測するシステムが開発され、稼動している。これの実船計測への適用が実現すれば、先の3手法とは異なり、面計測であるがゆえの計測時間の短縮、設置の簡易化が期待されるところである。本委員会が目指す次世代計測システムとしては、非常に有望であるが、実船計測への適用にはいくつかの課題が残されている。これについては、次節で述べる。

PIV の実船計測応用のための技術的課題
計測面積の拡大
実船計測の最大の課題は、計測面積の拡大である。PIV の最大の利点は、計測面における速度分布の一括計測である。実船スケールでの PIV 適用の試みがいくつかなされているが、現状では1画像で伴流分布全体を捉えるには至っていない。PIV はカメラとレーザーシート光の組合せであり、もし計測システムをトラバースする必要があるならば、これらを同時移動させる必要があり、結果としてピボット管計測と同様の装置が必要となり、PIV の利点が活かしきれないこととなる。そのためには、実船計測に適合する計測面積の拡大が課題となるが、これにはレーザー、カメラ、トレーサー粒子などの改善が問題となる。

レーザー出力
前述の計測面積の拡大の最も基本となるのは、照明源となるレーザー出力である。同じ距離でカメラを設置できるとしたら、必要とするレーザ出力は計測面積に比例する。実験室レベルで30cm×30cm程度であるが、実船計測では低く3m×3m すると単純に100倍の出力が必要となる。规格上は可能な数値であるが、計測面積の拡大にともないカメラの画角が同じであるとする相対的にカメラと計測断面の距離も離れるため、単純には上記の範囲では納まらない。カメラの解像度や感度にも依るとところが大きいが、実船の海水中での使用を考えると、1画像で伴流を網羅するような計測を実現するレーザーの選択には、仕様、価格、実現性などを勘案すると解決すべき課題は多いと考えられる。

カメラ解像度および感度
前述の計測面積の拡大、レーザー出力と原因を同じとする課題であるが、カメラの解像度および感度が計測システムの設計を大きく変える可能性がある。カメラの解像度は、粒子像の大きさにもよるが、広域の計測の場合、従来の計測システムと同様の解像度のカメラでは対応できない場合が発生するこ
gとが予測される。すなわち、トレーサー粒子にもなるが、計測面積を大きくすると粒子像が相対的に
小さくなり、同じ解像度のカメラでは粒子像を的確に捉えることができなくなり、結果としてPIV計
測に必要な画質の画像が得られなくなる可能性がある。粒子像の物理的大きさが同じであるとした場
合、計測面積を前述の100倍に拡大し、実験室と全く同じ画像を得ようするとカメラ解像度を100
倍にしなければならない。散乱特性やトレーサーの工夫により、これほどの解像度は必要ないとは思
われるが、現状の1メガピクセルのカメラに対して10倍以上の解像度の改善には時間がかかりと予
想される。感度についても、サンプリング周波数との関係もあるが、解像度共に重要な課題となると
と思われる。

トレーサー粒子

PIVの計測には、流場の可視化に必要なトレーサー粒子が必要である。実船計測の場合、海中には浮遊
粒子が多く存在し、これらをトレーサー粒子として利用することで問題は少ないとするもがあるが、
実験室レベルに比較すると粒子の数密度や流速の管理を考えると、能動的にトレーサー粒子の散
布が必要とされることも考えられる。トレーサーの懸濁や環境負荷を考慮した上で、PIVに適した
画像の取得を行うことは、容易でないことが予想される。これについては、具体的な問題点は実際の
海中の状況や、前述のレーザー、カメラなどとの組合せを考えて検討しなければならず、未知の部分が
多く残されている。

以上のように、PIVの実船計測への応用には、解決すべき課題は多く残されている。しかし、LDVを
含む従来の点計測に比べ、PIVで得られる情報量の大きさのメリットは大きく、これを実船に適用でき
ないかという期待は捨てきれない。上記の課題の克服、またはこれを回避する新しいアイディアの創出
が、今後、実船伴流分布の実施と有効な活用方法を拓く鍵となると考えるものである。
6 教育としての試験技術

従来、水槽実験についての教育は試験技術の習得を中心に行われてきたが、委員会での議論の中で、プロジェクト・マネジメント教育の一環として水槽実験を行うとの考え方が出てきた。これは、従来の受け身的な教育に対して、水槽実験を題材に、計測目標を立て、それを実現するための計測手段を組み立て実施することによりプロジェクトを評価するという、学生の自主的な側面を引き出すことを目的とした教育である。水槽実験は、結果が明瞭な形となって現れること、自然現象を対象とするため予測出来なかった要素が現れる可能性があること、センサ特性と信号処理技術というフィルタを介して結果が得られることなどにより、自主的な教育の手段として高いポテンシャルがあると思われる。このような新しい試みは既に一部の大学では実施されているが、他の大学では従来通りと、大学によって取り組みに差があるようである。今後の発展に期待したい。
第7章 おわりに

海技研 児玉良明

本委員会では、AEFD(Advanced Experimental Fluid Dynamics)と銘打って、今求められている先進的な流体力学実験法とは何かを検討するため、様々な調査を行うと共に、委員会で討議した。

先ず、委員会発足の直接の動機となったEUのHTA(Hydro-Testing Alliance)プロジェクトを調査した。HTAではEUの主立った研究機関が集まり、試験水槽において今後日常的に使用されると期待されるいくつかの先進的計測法について詳細な検討を行いつつある。

次に、国内の試験水槽の進の動向を、委員会メンバーが属する研究機関を中心に調査した。我が国における水槽試験設備は着実に更新されつつある。海技研では、全周に128基の造波板をもち世界で最深の深海水槽が平成14年に完成した。また、平成22年度の完成を目指して、全周に造波板をもつ実海域再現水槽を建設中である。防衛省の戦駆装備研究所では、我が国最大の極低背景雑音型キャビテーション水槽であるフローノイズシミュレータが平成17年に完成した。水産工学研究所では海洋工学総合実験棟に航跡軌跡計測装置が平成19年度に新設された。九大工学部では、キャンパスの移転に伴い、平成19年に高速回流水槽と運動性能試験水槽が完成した。

国外における水槽試験法の動向について、ITTC(International Towing Tank Conference、国際試験水槽)の各技術委員会における活動を、昨年9月に福岡で開催された第25回ITTC総会報告を基に調査した。Propulsion Committeeでは模型プロペラの幾何形状の定義をより明確にした。Manoeuvring Committeeでは操縦性能試験状態の模型船周りの流場についてPIVの開発が多くの研究機関によって行われ、計測法として成熟しつつある。また、キネマチックDGPSが上下方向も含めた実船の運動計測に用いられている。Specialist Committee on Azimuthing Podded Propulsionでは、Pod試験法の確立に向けて様々な要因の影響が実験的に検討された。Specialist Committee on Wake Fieldsでは、模型船及び実船周りの伴流分布の計測法について広範な検討を行い、PIVを用いた模型船伴流分布計測についてrecommended procedureを示した。

当委員会のメンバーは我が国の主要な試験水槽を網羅しており、当該メンバーに対して、国内の試験水槽で望まれる試験法及び実船試験法についてのアンケート調査を実施した。その結果、水槽試験法については、抵抗/自航試験における対水速度計測・伴流分布計測・船体表面圧力分布計測、POTにおけるPod試験法、自由航走模型試験における尺度影響の解消・高速船試験・運動計測法について問題点が多いあるいは必要性が高いとの結果を得た。これらは、新しい試験法の確立や、従来からある試験法についても計測精度の向上・実験効率の向上が求められていることを示している。また、HTAプロジェクトには含まれていない実船試験法についてもアンケート調査を実施したところ、水槽試験法を上回って問題点が多いあるいは必要性が高いとの結果が得られた。具体的な項目は、関心度の高い順に、伴流分布計測・波高分布計測・力及び圧力計測、位置計測である。

水槽試験法では、光学系の発達とPCの高い処理能力を用いて、点計測から面計測に着実に進展しつつあり、我が国においても、PIVを用いた模型船周り流場の精密計測や新しい波面計測法が開発されている。
つあり、我が国の水槽試験法も今後数年間で大きく変わる可能性がある。

以上の調査により、我が国の水槽試験技術は、水槽試験設備の更新も含めて、着実な進展を見せているが、一方で、HTA及びITTCの各委員会活動に見られるように、国外の研究の進展は一層活発であり、我が国造船産業の高度化と技術的優位の維持のためには、我が国においても早急にHTAと同様な研究開発プロジェクトを立ち上げるべきであると考える。残念ながら本委員会では新しいプロジェクトを立ち上げるに至らなかったが、以下に、その際の留意点を示し、今後の参考に供する。

・水槽試験では、光学系や処理系の高度化と効率化を通じて、流場を点計測から面計測に移行させるべきである。

・EFDの対極にあるCFD(Computational Fluid Dynamics)は着実な進展を見せているが、その発展のためには、計算結果を検証するための高精度・高密度な実験データが不可欠であり、EFDとCFDは連携を取りつつ発展させるべきである。

・船舶の流体力学的研究の最終目標は実船に働く流体力や実船周り流れを高精度に推定することにあるにも拘わらず、それらの計測例、特に実船周り流場の計測例は極めて少なく、研究の進展を大きく阻害している。最近の計測要素技術の発達を積極的に利用すれば、従来では不可能であったような計測が簡便かつ安価に実施できる可能性がある。実船周り流場の新しい計測法の開発にチャレンジすべきである。

・実船周りの流場計測はCFDの発達のためにも必要である。実船周りの超高レイノルズ数流れの数値シミュレーションが普通のPCを用いて実施できるようになって来ているが、用いられている乱流モデルが模型船レベルのレイノルズ数における実験データを用いてチューニングされているため、実船レベルのレイノルズ数において有効であるとの保証が無く、折角推定された実船流場の妥当性も検証されていない。乱流モデルをチューニングできるほど充分な量の実船流場データを取得すべきである。

・最近、実海域での船舶の流体力学的性能の向上に注目が集まっている。その中でも興味の中心である波浪中抵抗増加を高精度で推定するためには、実船周りの波分布を知る必要があり、WAVEXなどの市販品もあるが、より高精度で簡便な計測法の開発が求められている。
Appendix

A1. 委員名簿

<table>
<thead>
<tr>
<th>委員長</th>
<th>児玉 良明</th>
<th>（海上技術安全研究所）</th>
</tr>
</thead>
<tbody>
<tr>
<td>庶務幹事</td>
<td>眞田 昌吾</td>
<td>（大阪大学）</td>
</tr>
<tr>
<td>会計</td>
<td>佐藤 和範</td>
<td>（日本造船技術センター）</td>
</tr>
<tr>
<td>委員</td>
<td>安東 郁</td>
<td>（九州大学）</td>
</tr>
<tr>
<td></td>
<td>伊東 章雄</td>
<td>（IHI）</td>
</tr>
<tr>
<td></td>
<td>柏木 正</td>
<td>（大阪大学）</td>
</tr>
<tr>
<td></td>
<td>川北 千春</td>
<td>（三菱重工業）</td>
</tr>
<tr>
<td></td>
<td>竹腰 善久</td>
<td>（三井造船）</td>
</tr>
<tr>
<td></td>
<td>竹谷 正</td>
<td>（三井造船昭島研究所）</td>
</tr>
<tr>
<td></td>
<td>土井 康明</td>
<td>（広島大学）</td>
</tr>
<tr>
<td></td>
<td>西尾 茂</td>
<td>（神戸大学）</td>
</tr>
<tr>
<td></td>
<td>平山 功清</td>
<td>（横浜国立大学）</td>
</tr>
<tr>
<td></td>
<td>古川 芳孝</td>
<td>（九州大学）</td>
</tr>
<tr>
<td></td>
<td>松田 秋彦</td>
<td>（水産総合研究センター 水産工学研究所）</td>
</tr>
<tr>
<td></td>
<td>安川宏紀</td>
<td>（広島大学）</td>
</tr>
<tr>
<td></td>
<td>田中 寿夫</td>
<td>（ユニバーサル造船）</td>
</tr>
<tr>
<td></td>
<td>山田 智貴</td>
<td>（大阪府立大学）</td>
</tr>
<tr>
<td></td>
<td>林 昌奎</td>
<td>（東京大学）</td>
</tr>
<tr>
<td></td>
<td>長居 茂樹</td>
<td>（IHI）</td>
</tr>
</tbody>
</table>
A2. 開催記録

第一回

開催期日：2007年9月14日（金）
開催場所：学会事務局会議室
審議事項：
(1) 各委員の紹介
(2) 役員の選任
委員長：児玉（海技研）、会計：佐藤（SRC）
(3) 本委員会の目的、活動期間と内容
目的：水槽試験法及び実船流体計測法の新しい姿を提案する。
期間：2007年8月～2009年3月
(4) 本委員会の構成
(5) 本委員会を核とした競争的資金への応募について
(6) JSPC, JMDCとの連携について

第二回

開催期日：2007年11月12日（金）
開催場所：大阪大学吹田キャンパス
審議事項：
(1) 新委員の紹介と推薦
(2) 幹事の選任
 眞田（阪大）
(3) 九大新設水槽の紹介（九大 安東・古川）
(4) 講演1「曳航水槽におけるPIV計測システム」（阪大 戸田）
(5) 講演2「阪大船舶試験水槽における新波面計測法」（阪大 眞田）
(6) 本委員会のねらいとWG活動についての討議
(7) 船舶試験水槽見学（実験内容：「超高速三胴船模型試験」）

第三回

開催期日：2008年3月19日（水）
開催場所：九州大学伊都キャンパス
審議事項：
(1) 委員の交代について
(2) 実験技術の現状と将来展望（神戸大・西尾）
(3) 水槽試験に関する問題点についてのアンケートの実施と集計結果について
（海技研 児玉、阪大 眞田）
(4) 当委員会を母体とした新規研究プロジェクト申請に関する討議
(5) 九大新設水槽の見学

第四回

開催期日：2008年12月5日（金）
開催場所：学会事務局会議室
審議事項：
(1) 委員の加入について
(2) 最終報告書案についての討議

第五回
開催期日：2009年3月27日(金)
開催場所：学会事務局会議室
審議事項：
(1) 最終報告書案についての討議
(2) 委員会成果の発表予定